あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
電気化学実験用電極研磨材
発熱体は何でできていますか?効率的で信頼性の高い加熱のための主要な特性
ニクロムやFeCrAl合金などの発熱体材料の、高い抵抗率と耐酸化性を含む必須特性を発見してください。
アルミナの熱伝導率は?その独自の熱的・電気的特性に関するガイド
アルミナの熱伝導率(30~35 W/mK)、熱伝導体および電気絶縁体としての独自の役割、主要な用途について学びましょう。
耐熱材料としてどのような材料が使用されていますか?超合金、セラミックス、複合材料のガイド
超合金、セラミックス、複合材料などの高温材料について探求します。それらの特性、用途、そしてニーズに合った適切な材料の選び方を学びましょう。
炭化ケイ素と超硬合金のどちらが硬いですか?材料選択の鍵を発見する
炭化ケイ素の方が硬いですが、超硬合金の方が靭性が高いです。用途に応じて、硬度と靭性の重要な違いを学びましょう。
石英の抵抗値はどれくらいですか?その優れた絶縁特性を発見する
石英が、非常に高い抵抗率(10⁵~10¹⁸ Ω·m)と、要求の厳しい用途向けの熱安定性を持つ、最高級の電気絶縁体である理由を学びましょう。
耐火物の試験とは?高温性能のための必須試験
RUL、クリープ、熱衝撃抵抗などの主要な耐火物試験について学び、極度の熱と負荷条件下での材料性能を予測します。
石英ガラスは何度で溶けますか?軟化点と実用上の限界を理解する
石英ガラスの軟化点(約1665℃)と、安全で長期的な使用のために実用的な使用温度がはるかに低い理由を学びましょう。
Cvdダイヤモンドの色は変わりますか?いいえ、その色は永続的で安定しています。
CVDダイヤモンドの色が永続的である理由、成長後の処理がどのように機能するか、そして永続的な美しさを求めて自信を持って購入する方法を学びましょう。
モリブデンは熱を伝導しますか?高温用途におけるその役割を解き明かす
モリブデンが138 W/m·Kの導電率と1700°Cまでの安定性を持ち、高温プロセスにおける主要な熱伝導体である理由を発見してください。
加工硬化は導電性に影響しますか?強度と導電性のトレードオフを理解する
加工硬化が金属の強度をどのように高めるか、また転位による電子散乱のために電気伝導度をどのように低下させるかを学びましょう。
カーボンナノチューブは電気を通すのか?その答えは原子構造にある
カーボンナノチューブは、金属導体にも半導体にもなり得ます。キラリティー(鏡像異性)がその電気的特性と応用可能性をどのように決定するかを発見してください。
Semにはスパッタコーティングが必要ですか?鮮明で高解像度のイメージングのための必須ガイド
ポリマーやセラミックなどの非導電性サンプルのチャージングを防ぎ、画質を向上させるために、SEMスパッタコーティングが必要となる場合について学びましょう。
Cvdダイヤモンドの形状は?人工的に作られた板状のラボグロウンダイヤモンド
CVDダイヤモンドが、天然の八面体ダイヤモンドとは異なり、層状の堆積プロセスにより平らな板状に成長する理由を学びましょう。
Cvdダイヤモンドの需要は何によって牽引されていますか?倫理、純度、そして手頃な価格がその原動力です
倫理的な調達、技術的な純度、そして消費者にとっての手頃な価格によって牽引されているCVDダイヤモンドの需要の高まりを探ります。
低温でろう付けできるのはどのような種類ですか?熱に敏感な材料向けの銀合金
銀系ろう付け合金が、熱に敏感な部品や薄い材料の損傷を防ぐために、いかに低温接合を可能にするかをご覧ください。
化学におけるKbrとは何ですか?Ir分光法などにおけるその役割を発見する
臭化カリウム(KBr)の特性、赤外分光法における重要な役割、および医学や写真における歴史的な用途について学びましょう。
黒鉛は航空宇宙分野で使用されていますか?炭素繊維複合材の力を発見する
高強度の黒鉛繊維が、現代の航空機や宇宙船における優れた強度対重量比を実現する先進的な複合材をどのように作り出しているかを学びましょう。
Cvdダイヤモンドはどのくらい長持ちしますか?その寿命に関する真実を発見しましょう
CVDダイヤモンドは永遠に長持ちします。天然ダイヤモンドと同じ原子構造と耐久性を持ち、モース硬度で完璧な10点を獲得する理由を学びましょう。
マッフル炉に使用される耐火材は何ですか?研究室のニーズに合った適切なライニングを選択しましょう
アルミナ、炭化ケイ素、セラミックファイバーなどのマッフル炉用耐火材について学びましょう。温度安定性、速度、純度に応じて適切なライニングを選択してください。
Cvdダイヤモンドは本物のダイヤモンドですか?ラボグロウンダイヤモンドの真実を発見しましょう
FTCによると、CVDダイヤモンドが採掘されたダイヤモンドと化学的に同一であり、同じ物理的および光学的特性を持っている理由を学びましょう。
特定のアルミナ粉末の粒子径には、どの研磨クロスを組み合わせるべきですか?完璧な金属組織研磨のためのガイド
適切なアルミナ粉末と研磨クロスの組み合わせを学びましょう:1.0 µmにはナイロン/ベルベット、0.3-0.05 µmにはシャモアを使用すると、欠陥のない仕上がりになります。
Sm2(Co,Fe,Cu,Zr)17磁石の浸出プロセスにおいて、高精度電気化学ワークステーションはどのような役割を果たしますか?
LSVと精密な電流制御により、電気化学ワークステーションがSm2(Co,Fe,Cu,Zr)17磁石の選択的浸出を可能にする方法をご覧ください。
高精度バッテリーテストシステムと電気化学ワークステーションを使用する目的は何ですか? | バッテリーの洞察を解き明かす
高精度テストシステムと電気化学ワークステーションが、改質バッテリー電極の耐久性と速度論をどのように検証するかを学びましょう。
電気化学ワークステーションは、耐食性の評価にどのように役立ちますか?レーザー再溶融鋼の性能を定量化する
電気化学ワークステーションが3電極システムと分極試験を使用して、レーザー再溶融鋼の耐食性を定量化する方法を学びましょう。
酸化セリウム(Ceo2)や酸化亜鉛(Zno)のような金属酸化物は、太陽熱化学サイクルにおいてどのように機能しますか?
CeO2やZnOのような金属酸化物が、太陽熱化学サイクルにおいてレドックス媒体として機能し、純粋な水素や合成燃料を生成する方法を学びましょう。
工業用ニッケルフォームの主な機能は何ですか?触媒的酸素発生性能の向上
ニッケルフォームが触媒表面積を最大化するための3D導電性足場として機能し、工業用水電解条件をシミュレートする方法をご覧ください。
コーティング用途におけるアルミニウム(Al)の特性は何ですか?高反射率と導電性の探求
アルミニウムの赤外線反射率98%、低密度、高導電率が、光学および熱コーティングソリューションの最良の選択肢となる理由を学びましょう。
Rfスパッタリングはどのような種類の材料に使用されますか?誘電体およびそれ以上の薄膜成膜をマスターする
RFスパッタリングが非導電性誘電体材料の業界標準である理由と、さまざまな基板タイプにわたるその汎用性について学びましょう。
銅フォームの一般的な用途とは?その高性能な用途ガイド
銅フォームが熱管理、化学触媒、特殊ろ過においてどのように活用されているかを発見してください。その多孔質構造と導電性がどのように効率を向上させるかをご覧ください。
反応セルに耐食性ステンレス鋼を使用する利点は何ですか?インサイチュデータの整合性を確保する
耐食性ステンレス鋼がX線およびIR分光反応セルの構造強度と化学的不活性をどのように提供するかを学びましょう。
イットリア安定化セリア粉末にとって、乳鉢の材質が重要なのはなぜですか?瑪瑙またはジルコニアで純度を確保する
乳鉢の材質が、イットリア安定化セリア(YSC)粉末の調製における化学的汚染や粒界劣化を防ぐ方法を学びましょう。
Ods鋼の容器として304または430ステンレス鋼管が使用されるのはなぜですか?Hipによる耐食性向上
304/430ステンレス鋼容器が低クロムODSフェライト鋼に不可欠な耐食性と拡散接合をどのように提供するかをご覧ください。
実験室プロセスに不可欠な消耗品は何ですか?Ptfe、セラミック、るつぼの専門家ガイド
PTFE、セラミック、特殊るつぼを特集した、高温・耐薬品性に優れた必須実験室消耗品をご覧ください。
黒鉛アノード修理におけるホウ酸処理の目的は何ですか?アノードの性能と構造的完全性を向上させる
ホウ酸処理が黒鉛アノードの欠陥をどのように修復し、導電性を向上させ、熱処理を通じてリチウムイオン拡散を促進するかを学びましょう。
特殊Ptfe浸漬ユニットを使用する利点は何ですか?高忠実度の腐食シミュレーションを実現
PTFE浸漬ユニットがガルバニック腐食を排除し、工業的な閉鎖領域を再現して正確なマグネタイト蓄積試験を行う方法をご覧ください。
タンタルカーバイド(Tac)サンプルをグラファイトホイルで包む主な目的は何ですか?純粋で精密な焼結を保証する
グラファイトホイルが化学的拡散を防ぎ、金型を保護し、ホットプレス中のTaCサンプルの均一な圧力分布を保証する方法を学びましょう。
Sbfにおける電気化学的腐食試験に定温制御システムが必要なのはなぜですか?実験室の精度への鍵
正確な医療用インプラントの腐食データを確保するために、シミュレートされた体液(SBF)試験で正確な37°Cの温度制御が不可欠である理由を学びましょう。
前駆体ソースボトル(バブラー)加熱システムの機能は何ですか?Atsb気化における不可欠な役割
高粘度ATSB前駆体を気化させて安定した蒸気圧と一貫したAl2O3薄膜堆積を保証する方法を学びましょう。
4140鋼の前処理における超音波洗浄機の役割は何ですか?窒化活性化の均一性を確保する
超音波洗浄とキャビテーションが、4140低合金鋼の高品質窒化および拡散のための表面活性化をどのように実現するかを学びましょう。
炭素粉末ベッドは、ニアネットシェイプ焼結をどのように促進しますか?Spsによる複雑なTi2Alcギアの製造をマスターする
炭素粉末ベッドがSPSで擬似静水圧を可能にし、変形なしで複雑なTi2AlCセラミックギアを焼結する方法を学びましょう。
PtlとGdlは電解槽のコンポーネントにおいてどのような役割を果たしますか?物質輸送と導電性に関する重要な洞察
多孔質輸送層(PTL)とガス拡散層(GDL)が電解槽スタック内で流体と電気的接続をどのように管理するかを学びましょう。
水素環境下における耐火物ライニング材の課題とは?直接還元炉における重要な洞察
水素が炉のライニングに独自のストレスを与える理由を、化学的酸化物還元から高い熱伝導率と浸透性の問題まで学びましょう。
Li2S複合材料にはなぜジルコニア製ボールミル容器とボールが必要なのですか?固体電解質合成における純度を確保する
金属汚染なしにLi2Sベースの複合材料および固体電解質を調製するために、高密度ジルコニア製粉砕メディアがいかに不可欠であるかを学びましょう。
Uhmwpe放射線遮蔽にはなぜ熱間プレスが選ばれるのですか?高粘度を克服し、優れた密度を実現
UHMWPE放射線遮蔽において熱間プレスがいかに不可欠であるか、溶融粘度を克服して高密度で空隙のない保護複合材料を作成する方法を学びましょう。
微生物電気分解セル(Mec)におけるグラファイトロッドの役割とは?バイオ電気化学リアクターに電力を供給
MECリアクターにおいて、グラファイトロッドが電気的バックボーンとしてどのように機能し、抵抗を低減し、安定した性能のために均一な電圧を確保するかを学びましょう。
アルミナるつぼの封止に高温シーラントが使用されるのはなぜですか? 完璧なアルミナコーティング結果を実現
ラボでの酸化を防ぎ、均一なアルミナイジングを保証するために、アルミナるつぼに高温シーラントが不可欠である理由を学びましょう。
マグネシウムアルミニウムスピネル(Mgal2O4)粉末の焼成段階で、雰囲気炉による高純度の酸素環境が必要なのはなぜですか?
雰囲気炉内の高純度酸素が空孔を抑制し、MgAl2O4粉末の結晶粒成長を制御して高性能化する仕組みを学びましょう。
全固体電池のモールドにおいて、グラファイトシートの目的は何ですか?焼結とサンプル抽出の最適化
グラファイトシートが、モールドへの固着を防ぎ、焼結中の均一な圧力を確保することで、全固体電池の組み立てをどのように改善するかを学びましょう。
Pdpスキャンに高精度ポテンショスタットを使用する意義は何ですか?正確な腐食の洞察を解き明かす
高精度ポテンショスタットが微弱な信号をどのように捉え、ターフェル外挿を可能にして材料の正確な腐食速度を計算するかを学びましょう。
ナトリウムイオン電池電解質の評価にCr2032コインセルケースを使用する利点は何ですか?
CR2032ケースがナトリウムイオン電解質試験のゴールドスタンダードである理由を発見してください。気密シールと正確なデータ整合性を提供します。
パラジウムナノ粒子の乾燥に真空ロータリーエバポレーターが選ばれるのはなぜですか?触媒性能の最適化
焼結を防ぎ、高い触媒分散を確保するために、パラジウムナノ粒子の乾燥に真空ロータリーエバポレーションが不可欠である理由をご覧ください。
高エントロピー合金のOerにおける回転ディスク電極(Rde)の役割とは?純粋な触媒速度論の解明
回転ディスク電極(RDE)が気泡干渉と物質移動限界を排除し、高エントロピー合金のOER性能を評価する方法を学びましょう。
全固体電池用複合電極の作製において、真空ミキサーの主な機能は何ですか?
全固体電池の研究において、真空ミキサーが気泡を除去し、均一な分散を確保することで、欠陥のない電極コーティングを実現する方法を学びましょう。
マイクロ電気化学セルの主な利点は何ですか?最小限の試薬で研究を最大化する
マイクロ電気化学セルが、希少または高価な試薬をわずか200マイクロリットル使用して、精密な腐食研究を可能にする方法をご覧ください。
Lfpカソードシートに真空オーブンが必要な理由とは?ピーク時のバッテリー性能と安全性を確保する
LFPカソードシートの加工において、真空オーブンが水分除去、溶媒抽出、材料酸化防止に不可欠である理由を学びましょう。
水熱合成による前駆体サイズの制御はなぜ重要なのか?高性能Smco5磁性材料の創製
水熱合成による前駆体の合成が、幾何学的制御を通じてSmCo5磁性材料の保磁力とエネルギー積をどのように決定するかを学びましょう。
誘導炉のライニングにおけるアスベストボードの機能とは? 必須の断熱と湿気管理
アスベストボードが誘導コイルを熱的および電気的絶縁で保護し、炉のライニングで湿気を排出するのをどのように助けるかをご覧ください。
純チタン粒をゲッターとして使用するメカニズムは何ですか?高エントロピー合金の純度向上
チタン粒が化学ゲッターとしてどのように不純物を除去し、高性能合金の真空アーク溶解中の酸化を防ぐかを学びましょう。
高精度電気化学ワークステーションの主な機能は何ですか?リアクターのパフォーマンスを最適化する
電気化学ワークステーション(ポテンショスタット)が、精密な電圧制御とリアルタイムモニタリングを通じてリアクターのパフォーマンスを評価する方法を学びましょう。
ステンレス鋼の高温焼鈍中に石英管真空シールとゲッターが使用されるのはなぜですか?純度を保つため
石英管真空シールとゲッターを使用して、高温ステンレス鋼の焼鈍中の酸化を防ぎます。微細構造の完全性を確保します。
高精度電気化学ワークステーションのコア機能は何ですか? 304L不動態皮膜解析の最適化
高精度電気化学ワークステーションで304Lステンレス鋼の解析をマスターし、モット・ショットキー、EIS、欠陥密度定量化を行います。
アルミニウム合金試験片の封止に粘着性Ptfeテープが使用されるのはなぜですか?微生物腐食研究における精度を確保する
粘着性PTFEテープが活性表面積を定義し、エッジ効果を排除し、微生物腐食実験におけるデータ整合性を確保する方法を学びましょう。
熱化学反応器における多孔質セラミックフォーム(Rpc)の役割とは?体積吸収を実現する
RPCフォームが体積放射吸収を可能にし、熱・物質移動効率を向上させることで、熱化学反応器をどのように強化するかを学びましょう。
高速溶融混練装置の役割は何ですか? Rpe/Cspe熱可塑性エラストマー合成の鍵
高速溶融混練がリサイクルPEおよびCSPE熱可塑性エラストマーにおける分子分散と物理架橋をどのように可能にするかを学びましょう。
G-C3N4の調製における超音波ホモジナイザーの機能とは?触媒活性を最大限に引き出す
高出力超音波キャビテーションがg-C3N4とグラフェンをナノシートに剥離し、表面積と水素発生速度を向上させる方法を学びましょう。
有機金属化学気相成長法(Mocvd)とは何ですか?高度な半導体成長の解説
MOCVDが有機金属前駆体と熱分解を利用して、LED用のGaNなどの高品質化合物半導体を製造する方法を学びましょう。
Ptfeテープが電解研磨における反応領域の定義に選ばれるのはなぜですか?化学的・電気的安全のための精密マスキング
電解研磨にPTFEテープが不可欠である理由を学びましょう。その耐薬品性と絶縁破壊強度が、正確な電流密度と安全性を保証します。
焼結に使用されるセラミックスの種類は?先端材料と成形に関する専門家ガイド
アルミナやジルコニアなどの焼結に使用されるセラミックス、緻密化プロセス、材料収縮の効果的な管理方法について学びましょう。
銀(Ag)の主な特性は何ですか?比類なき電気伝導率と熱伝導率を持つ元素を発見しましょう
銀(Ag)の主な特性を探る:最高の電気伝導率と熱伝導率、低い接触抵抗、そして卓越した光反射率。
薄膜作製のためのスパッタリングの一般的なプロセスとは?高精度Pvdコーティング技術をマスターする
プラズマ生成から原子衝突、均一なコーティング塗布までの薄膜成膜における段階的なスパッタリングプロセスを学びましょう。
材料科学におけるプラズマとは?多用途な材料加工ツールとしての役割を理解する
プラズマの独自の電離状態と電磁応答性が、現代の材料科学および産業加工の基盤となっている理由を学びましょう。
高アルミナ(Al2O3)耐火物の一般的な特性は何ですか?高温耐性による性能向上
1800℃までの用途に対応する高アルミナ耐火物の機械的強度、化学的安定性、誘電特性をご覧ください。
薄膜を作成するために使用される材料と技術は何ですか?高度な実験室研究のための精密成膜をマスターする
ポリマーやセラミックスなどの薄膜材料について学び、実験室用途向けのPVD、CVD、スパッタリングなどの成膜技術を習得しましょう。
Cvdでグラフェン膜を形成するために使用される基板の種類は何ですか?適切な触媒でグラフェン成長を最適化する
銅、ニッケル、コバルトがCVDグラフェン製造に不可欠な基板であり、それらが膜厚と品質をどのように制御するかを学びましょう。
M42のスパッタリング前にアセトンとエタノールを用いた超音波洗浄が必要なのはなぜか?なぜそれが不可欠なのか
M42鋼のスパッタリングにおいて、コーティングの密着性を確保し剥離を防ぐために、アセトンとエタノールを用いた超音波洗浄が不可欠である理由を学びましょう。
軟磁性材料の準備におけるボールミルの主な役割は何ですか? 7.65 G/Cm³ の密度を達成する
ボールミルが、ピーク性能を持つ高密度軟磁性複合材料を実現するために、均一な微量潤滑剤の分布(0.01%-0.1%)をどのように保証するかを学びましょう。
ジルコニウム被覆の評価にオートクレーブシミュレーションシステムが必要なのはなぜですか? 原子炉の安全性と長寿命を確保する
実際の原子炉の温度と圧力下でジルコニウム被覆のコーティングをテストするために、オートクレーブシミュレーションがなぜ重要なのかをご覧ください。
Sm–Co磁石の回収はなぜアルゴン・グローブボックス内で行う必要があるのですか? 1Ppmの酸素・水分管理を徹底してください。
Sm–Co磁石の回収にアルゴン封入グローブボックスが不可欠な理由、酸化や吸湿を防ぎ、データの妥当性を確保する方法を学びましょう。
固体電解質の評価において、カスタマイズされたステンレス鋼ブロッキングセルはどのような役割を果たしますか?バッテリーテストの最適化
カスタマイズされたステンレス鋼ブロッキングセルが、全固体電池研究に機械的サポートと安定した界面をどのように保証するかをご覧ください。
固体前駆体昇華装置を使用する利点は何ですか?Mw-Swp Cvdプロセスにおける核生成の促進
樟脳粉末のような固体前駆体昇華装置がCVDセットアップを簡素化し、環構造によるグラフェン核生成を改善する方法をご覧ください。
Mw-Swp Cvd装置における誘電体窓の役割とは?石英による安定したプラズマ生成の確保
MW-SWP CVDシステムにおいて、石英誘電体窓がマイクロ波エネルギー伝送と表面波伝播をどのように可能にするかを学びましょう。
ポリエステルコーティングの評価において、実験用ポテンショスタットはどのような役割を果たしますか? データ駆動型の防食分析
ポテンショスタットとEISが、非破壊検査を通じてポリエステルコーティングの耐久性、吸水率、および遮蔽効率をどのように定量化するかをご覧ください。
C_Fiber/Si3N4におけるジルコニア製グラインディングジャーおよびボールの役割とは? 高純度セラミック複合材の実現
炭素繊維/窒化ケイ素複合材の調製において、ジルコニア製研磨メディアがいかに均一な分散を保証し、汚染を防ぐかを学びましょう。
オキシサルファイド電解質に気密ステンレス鋼ボールミルジャーが使用されるのはなぜですか?主な利点と代替案
気密ステンレス鋼ジャーが反応性の高い硫化物前駆体を保護し、全固体電解質合成に必要な運動エネルギーをどのように提供するかを学びましょう。
高精度金型はLi6Ps5Cl電解質膜形成にどのように貢献しますか?完璧な密度と厚さを実現
精密金型がLi6PS5Cl-CuF2-LiNO3電解質膜のプレス中に均一な密度を確保し、ショートを防ぐ方法をご覧ください。
事故耐性燃料(Atf)において、焼結パスを高速化することが好まれるのはなぜですか? U-N/U-Si複合材料の安定性を確保する
U-Si-N三元相の形成を防ぎ、微細構造の完全性を維持することで、ATF開発に高速焼結がいかに不可欠であるかを学びましょう。
硝酸プルトニウム溶液への窒素(N2)ガスのバブリングの目的は何ですか?正確な脱酸素を確保する
正確な電気化学および腐食データを確保するために、硝酸プルトニウム溶液の脱酸素に窒素バブリングが不可欠な理由を学びましょう。
固体電解質(Se)反応セルシステムのユニークな利点は何ですか?超純水H2O2の生産を実現
固体電解質(SE)反応セルが塩の汚染を排除し、工業用純度の過酸化水素の生産を合理化する方法をご覧ください。
コンクリート中のナノ粒子に高せん断強力ミキサーが必要なのはなぜですか?完全な補強ポテンシャルを解き放つ
強度を最大化し、浸透性を効果的に低減するために、コンクリート中のナノシリカを分散させるために高せん断混合が不可欠である理由を学びましょう。
アルミナコーティングされたステンレス鋼撹拌棒を使用することの重要性は何ですか?純アルミニウム合金の均質化を保証する
アルミナコーティングされた撹拌棒が、鉄の汚染を防ぎ、溶融アルミニウム処理における実験の完全性を保証するために不可欠である理由を学びましょう。
ホットウォールLp-Mocvdシステムの利点は何ですか?複雑な3D形状に対する優れたコンフォーマルコーティング
ホットウォールLP-MOCVDが、優れた結晶性と相制御を備えた複雑な3D構造上の均一な二酸化チタンコーティングをどのように保証するかをご覧ください。
腐食実験反応セルでゲッターとして使用される金属チタンチップの機能は何ですか?データの純度を確保してください。
チタンチップが化学ゲッターとして機能し、高温腐食試験で酸素不純物を除去して不活性環境を確保する方法を学びましょう。
凍結乾燥はC@Siアノード前駆体をどのように改善しますか?昇華による材料構造の強化
凍結乾燥が昇華によってC@Siアノード前駆体の凝集と構造崩壊を防ぎ、優れたバッテリー材料を実現する方法を学びましょう。
Pdms/Teos膜成膜における石英管と窒素の役割は何ですか?均一な膜成長を実現する
石英管反応チャンバーと窒素キャリアガスが、PDMS/TEOS複合膜成膜における純度と均一性をどのように確保するかを学びましょう。
Ptfeコーティングされたガラス電解セルを使用する利点は何ですか?Co2飽和試験における精度を確保する
PTFEコーティングされた単槽ガラス電解セルが、化学的不活性、安定したガス飽和、および隙間腐食の低減をどのように提供するかをご覧ください。
310Sステンレス鋼を使用する利点は何ですか?炉のスクリューシャフトとシャッターの1200℃の信頼性を確保する
310S耐熱ステンレス鋼が、機械部品の1200℃の安定性と耐酸化性により、炉の信頼性をどのように向上させるかをご覧ください。
高硬度ステンレス鋼のボールとジャーは、Ods合金の調製にどのように役立ちますか?運動エネルギーと純度の向上
高硬度ステンレス鋼の粉砕メディアが、ODS合金粉末調製におけるエネルギー伝達を最適化し、汚染を最小限に抑える方法を学びましょう。
クレビス腐食試験における鋸歯状Ptfeガスケットの機械的機能とは?材料シミュレーションにおける精度
鋸歯状PTFEガスケットが、幾何学的に一定のマイクロクレビスを生成して合金の耐性を試験し、静止した接合部の条件をシミュレートする方法をご覧ください。
Cvdによるアモルファス炭素層の適用は、電気的フェントン触媒にどのように影響しますか? H2O2選択性を向上させる
CVDで適用されたアモルファス炭素層が、2電子移動を促進してH2O2選択性を高めることで、電気的フェントン触媒を最適化する方法を学びましょう。
Wpcリサイクルにおける産業用破砕機と粉砕機の役割は何ですか?表面積と材料の均一性を向上させる
産業用破砕機と実験用粉砕機が、効率的な化学処理のために比表面積を増加させることでWPCリサイクルを最適化する方法を学びましょう。
前へ
Page 3
次へ