あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
ラボラトリー油圧プレス 分割式電動ラボペレットプレス
恒温水槽はどのくらいの頻度で洗浄すべきか?汚染と腐食を防ぐための週ごとのガイド
実験室の完全性を維持するために週ごとの水槽洗浄が不可欠な理由を学びましょう。信頼できる結果を保証するために、微生物の増殖、ミネラルの蓄積、機器の腐食を防ぎます。
なぜAg/Agclは参照電極として使用されるのですか?電気化学測定における比類ない安定性と信頼性のため
Ag/AgCl電極が電気化学分析の業界標準である理由をご覧ください。安定した電位、再現性、安全性を備えています。
Ag-Sno2-Y2O3複合粉末の調製における遊星ボールミルの具体的な役割は何ですか?
高性能Ag-SnO2-Y2O3複合粉末の均一な分散と微細構造の洗練を遊星ボールミルがどのように保証するかをご覧ください。
ろ紙は液体から固体を分離するために使用できますか?効果的なろ過ガイド
ろ紙がどのように機能して液体から固体を分離するか、最適な結果を得るための孔径、ろ過速度、およびセットアップ方法について学びます。
最も効率的な発熱体は何ですか?それは熱の発生ではなく、熱伝達に関するものです
発熱体の効率がエネルギー変換ではなく、用途によって決まる理由を発見してください。伝導、対流、放射を特定の加熱タスクに適合させる方法を学びましょう。
Sicヒーターエレメントの最高温度は何度ですか?長寿命と性能の鍵を解き明かす
SiCヒーターエレメントの実用的な限界、エレメント温度とプロセス温度の違い、そして寿命と効率を最大化する方法を発見してください。
蒸発のために直火加熱ではなく、ウォーターバスの使用が推奨されるのはなぜですか?実験室の安全と精度を確保しましょう
ウォーターバスが、穏やかで均一な加熱、熱に弱い化合物の分解防止、そして実験室での火災リスク低減に不可欠である理由を発見してください。
連続式反応器の欠点は何ですか?投資する前にトレードオフを理解しましょう。
情報に基づいた意思決定を行うために、高額な設備投資、運用上の柔軟性の欠如、材料処理の課題など、連続式反応器の主な欠点を探ります。
加熱エレメントの効率はどれくらいですか?エネルギー変換の真実を解き明かす
電気ヒーターエレメントは、電力を熱に変換する効率がほぼ100%ですが、真の有効性はコストと用途によって異なります。
ろう付けまたはろう接用のフラックスを選択する際、どのような基準を考慮する必要がありますか?強力で信頼性の高い接合部を確保する
ろう付けフラックスを選択するための主要な基準を学びましょう:母材との適合性、溶加材との組み合わせ、および適切な活性化温度範囲。
ヒーターエレメントの特性とは?性能、寿命、コストに関するガイド
ヒーターエレメントの主要な特性(電気抵抗率、最高使用温度、耐久性、トレードオフ)を学び、用途に最適なものを選びましょう。
発熱体のサイズを決定するものは何ですか?最適な性能と寿命のための主要な要因
電力、電圧、材料の抵抗率、物理的制約が、効率、寿命、安全性のための発熱体サイズをどのように決定するかを学びましょう。
焼き入れ可能な鋼材の種類は?最適な性能のための焼入れ可能鋼材ガイド
炭素鋼から工具鋼まで、焼き入れによって硬化させることができる鋼材について学びましょう。成功する熱処理のための炭素含有量と焼入れ性の役割を理解します。
発熱体の抵抗に影響を与える要因とは?正確な熱設計のための4つの主要な変数をマスターする
材料、長さ、断面積、温度が、アプリケーションの加熱エレメントの抵抗と電力出力をどのように決定するかを学びましょう。
浸炭処理が可能な材料は?硬い表層と靭性の高い芯材のための適切な鋼材の選択
優れた耐摩耗性と芯材の靭性を得るために、低炭素鋼や合金鋼を含む、浸炭処理に最適な材料について学びましょう。
ヒーターエレメントが故障しているかどうかをどうやって見分けるか?マルチメーターを使った4つのステップでの診断
マルチメーターを使用して、故障したヒーターエレメントの決定的なテスト方法を学びます。抵抗をチェックし、断線やショートなどの故障を特定するためのステップバイステップガイド。
ろう付け温度に達すると、フラックスはどうなりますか? 完璧な接合を確実にするために活性化します
ろう付け温度でフラックスが活性な化学薬剤に変化し、酸化物を溶解して強力で信頼性の高いろう付け接合を可能にする方法を学びましょう。
発熱体にはどのような金属が使用されていますか?ニクロムからタングステンまでの材料ガイド
ニクロム、モリブデン、グラファイトなどの発熱体材料を探求します。温度、環境、コストに基づいて適切な材料を選択する方法を学びましょう。
発熱体の動作温度はどのくらいですか?用途の熱要件に合った材料を選びましょう
ニクロム、カンタル、SiCなどの材料と動作雰囲気によって、発熱体の動作温度が250℃から1800℃以上にどのように決定されるかを学びましょう。
最適な発熱体はどれですか?温度と予算に合った適切な材料の選び方
ニクロム、カンタル、セラミック発熱体を比較します。どの材料が特定の温度と用途のニーズに対して最高の性能を発揮するかを学びましょう。
等方性黒鉛の密度はどのくらいですか?要求の厳しい用途で優れた性能を発揮
等方性黒鉛の高密度(1.75-1.90 g/cm³)が、なぜ先進的なエンジニアリングにおいて卓越した強度、導電性、加工性をもたらすのかをご覧ください。
現代のHphtダイヤモンドとCvdダイヤモンドの品質はどのように比較されますか?精密ラボ技術で完璧な結果を達成
HPHT対CVDダイヤモンドの真実を発見してください。現代の技術がそれらを視覚的に同一にする理由と、成長特性に基づいて選択する方法を学びましょう。
Cvdにおけるダイヤモンド形成の新たに発見されたメカニズムは何ですか?グラファイトからダイヤモンドへの遷移を探る
水素-酸素-タンタル雰囲気下で、グラフェンやグラファイトの針から高純度のsp3ダイヤモンドへの相転移がどのように可能になるかを発見してください。
薄層分光電気化学セルにはどの電極タイプが適合しますか?ハードウェアの適合性を最適化する
分光電気化学セル用のAg/AgCl参照電極、Ptワイヤー対極、Ptメッシュ作用電極の正確な仕様を学びましょう。
超高温蒸気反応システムにおける高純度アルゴンと圧力調整弁の機能は何ですか?精密制御を確保する
超高温蒸気反応システムにおいて、高純度アルゴンと圧力調整弁が酸化を防ぎ、ガス流を安定させる仕組みを学びましょう。
高純度アルゴンガスシステムの目的は何ですか?マグネシウムボールミリングにおける安全性と性能の確保
高純度アルゴンがマグネシウムの酸化を防ぎ、高エネルギーボールミリング中の水素生成のための活性サイトを維持する方法を学びましょう。
Llzoセラミック膜の脱脂の必要性とは?Kintekサーマルソリューションズで完全性を確保
焼結中のひび割れ、気泡、構造破壊を防ぐために、チューブ炉またはマッフル炉での脱脂がLLZO膜にとってなぜ不可欠なのかを学びましょう。
電気化学的水素チャージにおいて、定電流電源はどのような役割を果たしますか? 316L鋼の研究を最適化する
316Lステンレス鋼の研究において、定電流電源が水素チャージ速度論とトラップ捕捉挙動をどのように制御するかを学びましょう。
クレビス腐食試験における鋸歯状Ptfeガスケットの機械的機能とは?材料シミュレーションにおける精度
鋸歯状PTFEガスケットが、幾何学的に一定のマイクロクレビスを生成して合金の耐性を試験し、静止した接合部の条件をシミュレートする方法をご覧ください。
真空反応チャンバーの設計はVppセンサーの品質にどのように影響しますか?今日、気相重合を最適化しましょう
真空反応チャンバーの設計がいかにして均一なコーティングを保証し、高感度VPP化学センサーの溶剤浸食を排除するかを学びましょう。
異なる種類の金属ディスク電極に推奨される表面保護方法は?長寿命化のための必須ガイド
Au/Ptの場合はHClO₄中での保管、Ni/Feの場合はカーボンコーティングなど、金属ディスク電極の最良の表面保護方法を学び、データの精度を確保しましょう。
電気分解セルにはどのような種類の電極が使用されますか?あなたの研究室に最適なシステムを選択しましょう
陽極、陰極、作用極、対極、参照極を含む、電気分解セルにおける二電極系と三電極系の違いを学びましょう。
ロックウール断熱材よりも優れているのは何ですか?熱性能または防火性能を最大化する
熱効率においてPIRフォームボードがロックウールを上回る場合、またロックウールの耐火性・遮音性がそれを上回る場合についてご紹介します。
金電極の欠点は何ですか?研究プロジェクトにおける主な制限
金電極のコスト高、製造の複雑さ、耐久性の低さといった実用的な制限を探り、研究室での選択を十分情報に基づいて行いましょう。
硬膜外電極にプラチナが使用されるのはなぜですか?優れた生体適合性と電気効率
プラチナは、比類のない生体適合性、高い電荷注入容量、および体内での長期安定性により、硬膜外電極に理想的です。
前へ
Page 12
次へ