るつぼの機能とは?安全で高温の材料処理のためのガイド

るつぼの役割を発見してください。これは、汚染なしに極度の高温で材料を溶解、焼成、処理するための特殊な容器です。

るつぼとして使用できる材料は何ですか?高温用途に最適な材料を選択してください

実験室や鋳造所のニーズに応じて、温度、化学的不活性、コストに基づき、アルミナ、グラファイトから白金までの最適なるつぼ材料を見つけましょう。

合成ガス製造に高純度アルミナるつぼが選ばれるのはなぜですか?共電解における耐久性と純度を確保する

高純度アルミナるつぼが合成ガス製造に不可欠である理由、溶融塩電解における耐食性と密度について学びましょう。

最も耐久性のあるるつぼはどれですか?溶解用途に合った適切なるつぼを選びましょう

材料の特性を特定の溶解ニーズ、温度、化学的適合性に合わせることで、最も耐久性のあるるつぼを選ぶ方法を発見してください。

セラミックるつぼで金を溶かすことはできますか?安全な溶解に適したるつぼを見つけましょう

適切な種類のるつぼを使用して金を安全に溶かす方法を学びましょう。熱衝撃のリスクと、材料の選択がなぜ重要であるかを理解してください。

Fe-Cr-Al Ods合金の1200℃での酸化試験に高純度アルミナるつぼが選ばれる理由。精度を確保する。

Fe-Cr-Al ODS合金の1200℃酸化試験において、高純度アルミなるつぼがデータの正確性と化学的安定性を確保するために不可欠である理由を学びましょう。

ポリマー材料の熱分析において、高品質なるつぼやセラミック消耗品の使用が不可欠なのはなぜですか?

汚染を防ぎ、データの整合性を確保することで、正確なポリマー熱分析に高品質のるつぼとセラミックが不可欠である理由を学びましょう。

液体ビスマス腐食試験の反応容器として、高純度アルミナるつぼが一般的に選ばれるのはなぜですか?

化学的不活性と安定性により、高純度アルミなるつぼが液体ビスマス腐食試験の業界標準となっている理由をご覧ください。

溶融Flinakに高純度アルミナるつぼが使用されるのはなぜですか?腐食性の塩環境で最高の純度を確保する

FLiNaKフッ化物塩環境において高純度アルミなるつぼが不可欠である理由、化学的不活性と熱安定性について学びましょう。

るつぼは高温に耐えられますか?極度の熱に対する適切な材料の選択

るつぼの材質(セラミック、グラファイト、金属)が、その耐熱性、安定性、化学的不活性性を用途に応じてどのように決定するかを学びましょう。

るつぼの寿命はどれくらいですか?るつぼの寿命を15回から100回以上に延ばす方法

るつぼの寿命は15回から100回以上の使用で異なります。材料、温度制御、適切な取り扱いが寿命にどのように影響するかを学びましょう。

実験用るつぼとは?高温封じ込めに関する必須ガイド

金属の溶解、サンプルの灰化、重量分析など、高温プロセスにおける実験用るつぼの重要な役割について学びましょう。

るつぼの仕組みとは?高温溶解容器の必須ガイド

るつぼがどのように材料を溶解させるか、その重要な機能、および実験室や鋳造所のニーズに合った適切な材料の選び方を学びましょう。

Rppo焼成に高純度アルミナるつぼを使用する理由とは? 1150℃での化学量論的純度を保証

RPPO合成において、汚染を防ぎ、1150℃で正確な化学量論を維持するために、高純度アルミなるつぼがいかに不可欠であるかを学びましょう。

Llto焼成に高純度アルミナるつぼが必要なのはなぜですか? 材料の純度と化学量論を確保する

850℃での化学的安定性と正確な化学量論を保証する、LLTO焼成に高純度アルミなるつぼが不可欠である理由を学びましょう。

高温に耐え、金属やガラスに使用できるるつぼ容器はどれですか?プロセスのための適切な材料を見つける

高温用途向けに、黒鉛、アルミナ、ジルコニアのるつぼを比較します。温度、化学的不活性、コストに基づいて選択する方法を学びましょう。

高純度アルミナるつぼを使用する利点は何ですか? Llztoカソードの性能と材料純度を最大化する

高純度アルミなるつぼが、酸素雰囲気下でのLLZTOコーティングカソードのアニーリング中に汚染や固相反応を防ぐ方法を学びましょう。

るつぼを予熱する必要がありますか?壊滅的な故障を防ぐための重要なステップ

安全性と性能のためにるつぼの予熱がいかに不可欠であるかを学びましょう。熱衝撃を防ぎ、湿気を取り除き、るつぼの完全性を確保します。

るつぼの安全上の注意点は何ですか?熱衝撃を防ぎ、実験室の安全を確保する

るつぼの重要な安全のヒントを学びましょう:適切なPPE、熱衝撃の防止、および事故や機器の故障を避けるための安全な取り扱い手順。

るつぼはなぜ溶けないのですか?高温用途向け耐火材料の科学

るつぼは、高融点、耐熱衝撃性、化学的不活性を持つ耐火材料により、安全な金属溶解のために溶融に耐えます。

高純度アルミナるつぼがパックセメンテーションに適している理由は何ですか?コーティングの純度と熱安定性を最適化する

高純度アルミナるつぼがパックセメンテーションに不可欠である理由を学びましょう。化学的不活性と1000°Cを超える安定性を提供します。

チタン酸バリウムの焼鈍にアルミナまたは石英るつぼが使用されるのはなぜですか? Btoナノファイバー合成における純度を確保する

BTOナノファイバーの焼鈍に高純度アルミナおよび石英るつぼが不可欠である理由を、化学的不活性と耐熱性から学びましょう。

るつぼの目的とは?高温保持と純度に関するガイド

冶金学と化学におけるるつぼの極めて重要な役割を発見してください。金属を溶解する際に、るつぼがどのように材料の純度を保証し、極度の熱に耐えるかを学びましょう。

るつぼの特性は何ですか?高温または化学プロセスに適したるつぼの選択

るつぼの必須特性:耐熱性、化学的不活性、熱安定性を学びましょう。実験室または産業用途に最適な材料を選択してください。

るつぼの欠点は何ですか?材料、コスト、性能における主要な制約

熱衝撃、化学反応性、限られた寿命、高温プロセスにおける汚染リスクなど、るつぼの欠点を探ります。

異なる材料が異なる熱容量を持つのはなぜですか?エネルギー貯蔵の微視的な秘密を解き明かす

水のような材料が、分子の複雑さ、自由度、水素結合のような分子間力によって高い熱容量を持つ理由を発見してください。

るつぼはひび割れることがありますか?熱衝撃を防ぎ、るつぼの寿命を延ばす方法

るつぼが熱衝撃、物理的損傷、化学的攻撃によってひび割れる理由を学びましょう。安全性と長寿命のための予防策と材料選択に関する専門家のヒントをご覧ください。

るつぼのサイズは重要ですか?効率、品質、安全性を最適化する溶解プロセス

るつぼのサイズが、高温プロセスの加熱効率、材料品質、および運転の安全性に不可欠である理由を学びましょう。

るつぼはいつから使われていたのか?古代の冶金から現代のラボまで

青銅器時代の金属加工から現代の半導体製造、材料科学に至るまで、るつぼの完全な歴史を探る。

溶解るつぼをどのように掃除しますか?るつぼを保護し、金属の純度を確保する方法

溶解るつぼを掃除する適切な方法、相互汚染の防止、および寿命を延ばす方法を学びます。金属加工業者にとって不可欠なヒントです。

なぜるつぼは頻繁に割れるのですか?熱衝撃を防ぎ、るつぼの寿命を延ばす方法

熱衝撃、化学的攻撃、機械的応力など、るつぼの破損の主な原因と、より安全で効率的な操業のためにそれらを防止する方法を学びましょう。

るつぼは再利用できますか?適切な手入れで寿命と安全性を最大化する

適切なシーズニング、検査、取り扱いを通じて、るつぼを安全に再利用する方法を学び、高価な故障を防ぎ、金属の純度を確保しましょう。

るつぼの危険性とは何ですか?熱衝撃、汚染、破損を防ぐ

熱衝撃による爆発や材料の汚染など、るつぼ使用に伴う重大な危険性と、適切な手順によるそれらの防止方法について学びましょう。

実験室でるつぼは何に使われますか?高温処理に不可欠なツール

重量分析、金属溶解、材料合成などの高温用途における実験室用るつぼの重要な役割を発見してください。

Ysc粉末に高純度アルミナるつぼを使用する利点は何ですか?化学的純度と安定性を確保する

イットリア安定化セリア(YSC)合成に高純度アルミナるつぼが不可欠である理由を発見し、汚染ゼロと熱安定性を確保します。

窒化ホウ素(Bn)またはアルミナ製るつぼがNaフラックスGan成長に好まれるのはなぜですか?結晶収率を最適化する

BNおよびアルミナルつぼがNaフラックス窒化ガリウム成長に不可欠である理由を学びましょう。これらは低い濡れ性と高い耐薬品性を提供します。

なぜるつぼは磁器製なのでしょうか?耐熱性と化学的不活性の理想的なバランス

磁器が実験室のるつぼの標準となっている理由をご覧ください。高温耐性、化学的不活性、そして一般的な用途における費用対効果を提供します。

磁製るつぼは何でできていますか?研究室のための材料科学を解き明かす

磁製るつぼの組成を発見:カオリン、石英、長石。これらの材料がどのようにして研究室作業のための高い耐熱性と耐薬品性を生み出すかを学びましょう。

熱浸アルミニウムコーティングに高純度アルミナセラミックるつぼが使用されるのはなぜですか?純度と熱安定性を確保する

高純度アルミナルつぼが、汚染を防ぎ、熱構造の完全性を確保するために、熱浸アルミニウムコーティングに不可欠である理由を学びましょう。

アルミナの最高使用温度は?純度と形態が果たす重要な役割

アルミナの最高温度は単一の数値ではありません。純度(99%と耐火物)が、用途に応じて1400°Cから1750°Cまでの範囲をどのように決定するかを学びましょう。

セラミックはるつぼとして使用できますか?高温での成功のための適切な材料の選択

特定の温度、化学的要件、熱衝撃のニーズに合わせて、アルミナ、ジルコニア、炭化ケイ素など、最適なセラミックるつぼ材料を探ります。

るつぼ(Crucible)は、るつぼの中で何に使われますか?金属などを溶かすための必須ツール

るつぼの目的を発見しましょう。るつぼは、鋳造や実験作業のために炉内で金属、ガラス、合金を溶かすための高温容器です。

耐食性セラミックるつぼの使用は、どのようにして材料の化学的純度を保証するのですか? | Kintek

高純度セラミックるつぼが、溶融塩合成中に汚染や溶出を防ぎ、材料の純度と結晶成長を確保する方法を学びましょう。

高融点るつぼとは?極限的な高温用途に不可欠

アルミナ、グラファイト、ジルコニアなどの材料で作られた、最高2500℃の極限的な熱に耐える高融点るつぼをご覧ください。選択のヒントを学びましょう。

高温に最適なるつぼは?成功のために材料と雰囲気を合わせましょう

高温に最適なるつぼの選び方を発見してください。温度、反応性、雰囲気に基づいて、タングステン、グラファイト、ジルコニア、アルミナを比較します。

化学におけるるつぼの機能とは何ですか?純粋な結果を得るために極度の熱に耐えること

化学におけるるつぼの役割を発見してください。金属の溶解、重量分析、サンプルの灰化を汚染なく行うための高温容器です。

化学においてるつぼは何のために使われますか?正確な分析のために極度の熱に耐える

るつぼは、灰化、金属の融解、重量分析などの高温化学作業に特化した容器です。主な用途と材料の選択について学びましょう。

実験室におけるるつぼの用途は何ですか?正確で高温のサンプル分析を保証する

融解、溶融、分析化学などの高温プロセスにおける実験室用るつぼの不可欠な役割を発見してください。材料の選択が精度にどのように影響するかを学びましょう。

Llzo焼成におけるアルミナるつぼの主な機能は何ですか?固体電解質合成を最適化する

1000℃の焼成中に、アルミナるつぼが立方晶LLZOを安定化させ、リチウムの揮発性を管理し、熱的完全性を提供する仕組みを学びましょう。

異なる金属に同じるつぼを使用できますか?金属の純度と安全性のために専用のるつぼが不可欠な理由。

異なる金属に同じるつぼを使用すると、汚染、るつぼの損傷、安全上のリスクがどのように発生するかを学びます。信頼性の高い結果を得るためのベストプラクティスに従ってください。

グラファイトるつぼはセラミックよりも優れていますか?高温るつぼ選択の決定版ガイド

グラファイトとセラミックるつぼ:熱衝撃耐性、酸化安定性、熱伝導性の主な違いを学び、ラボ用途に役立てましょう。

リチウム系正極焼結に高純度アルミナるつぼを使用する理由とは?純度を確保し、化学的汚染を防ぐ

リチウム系コーティングの焼結に高純度アルミなるつぼが不可欠である理由を発見し、汚染を防ぎ、構造的完全性を維持します。

ホウケイ酸ガラス釉薬を施したセラミックるつぼの機能とは? Srfeo3ナノ結晶合成における純度を保証する

ホウケイ酸ガラス釉薬が、高純度のSrFeO3ナノ結晶合成を保証するために、腐食性の溶融塩やNa2O2からるつぼをどのように保護するかをご覧ください。

電子レンジによる赤泥処理に高純度アルミナるつぼが選ばれるのはなぜですか?純度とエネルギー効率を確保する

透明性と化学的安定性により、電子レンジによる赤泥処理に高純度アルミなるつぼが不可欠である理由をご覧ください。

Kcl-Nacl溶融塩電解液の取り扱いにアルミナ製るつぼを使用する利点は何ですか?純度と安定性を確保する

KCl-NaCl溶融塩電解において、アルミナ製るつぼが優れた化学的安定性と耐火性を提供する最良の選択肢である理由を発見してください。

ガラス固化にアルミナ(コランダム)るつぼを使用する利点は何ですか?純粋で高温な結果を保証

ガラス固化にアルミナルつぼが不可欠な理由を発見してください:高い耐火性、化学的純度、腐食性溶融ガラスへの耐性。

優れたるつぼの特性とは?高温性能のための必須ガイド

優れたるつぼの主要な特性を発見しましょう:実験室での使用に不可欠な、高融点、熱衝撃耐性、化学的不活性、および機械的強度。

るつぼが耐えられる温度は?安全な溶解のための材料選定ガイド

粘土黒鉛、炭化ケイ素、アルミナ、ジルコニアなどのるつぼ材料の最高使用温度定格を学びましょう。用途に合ったるつぼを選んでください。

高純度アルミナるつぼを使用する技術的な利点は何ですか?Cvd合成の結果を最適化する

高純度アルミなるつぼがCVD材料合成中に化学的不活性、熱安定性、化学量論的精度をどのように保証するかを学びましょう。

ナトリウム官能基化バイオ炭のTg/Dtg分析において、アルミナるつぼが一般的に選択されるのはなぜですか?正確な分析を保証するために

反応を防ぎ、データの整合性を確保するために、バイオ炭触媒のTG/DTG分析に高純度アルミナルつぼが不可欠である理由をご覧ください。

セラミックが耐えられる最高温度は何度ですか?極度の高温性能ガイド

アルミナから炭化ケイ素まで、さまざまなセラミックの温度限界を発見し、高温用途に最適な材料の選び方を学びましょう。

るつぼはどれくらい持ちますか?寿命を15回から100回以上の溶解回数まで最大化する方法

るつぼの寿命は15回から100回以上の溶解回数までと幅があります。材料、取り扱い、運転条件が耐久性にどのように影響するか、そしてそれを延ばす方法を学びましょう。

るつぼ材料の特性とは?高温での成功に不可欠な特性

るつぼ材料の主要な特性を学びましょう:極端な耐熱性、化学的不活性、および純度と性能のための物理的安定性。

粘土るつぼの最高温度は何度ですか?あなたの溶解ニーズに合ったるつぼを見つけましょう

粘土るつぼの最高温度は約1600°Cです。材料の組成(グラファイト、SiC)がどのように温度限界と化学的適合性を決定し、安全な溶解を可能にするか学びましょう。

るつぼはどれくらいの熱に耐えられますか?溶融用途に合った材料の選び方

るつぼの耐熱性は1600°Cから3400°C以上まであります。金属と温度のニーズに合ったるつぼ材料の選び方を学びましょう。

るつぼの温度は何度ですか?熱のニーズに合った適切な材料の選び方

るつぼには単一の温度というものはありません。グラファイト、SiC、アルミナ、モリブデンなど、特定の高温用途に最適なるつぼ材料の選び方を学びましょう。

エポキシ樹脂の熱分析には、なぜ高純度セラミックるつぼを使用する必要があるのですか?絶対的なデータ整合性を確保する

化学的不活性とデータの精度を確保するために、エポキシ樹脂の熱分析に高純度セラミックるつぼが不可欠である理由をご覧ください。

耐熱性るつぼの製造に黒鉛は使用されますか?より速い溶解と優れた性能を実現

黒鉛が高い熱伝導率、化学的不活性、および卓越した耐熱衝撃性を提供し、耐熱性るつぼに最適な選択肢である理由をご覧ください。

高温るつぼは何でできていますか?研究室に最適な材料を選びましょう

プラチナ、グラファイト、セラミックスなどの高温るつぼ材料について学びましょう。純度、導電性、または熱安定性に合わせて適切なものを選択してください。

融点に影響を与える化学的要因とは?分子間力と格子エネルギーのガイド

分子間力、イオン結合、分子の対称性、純度が物質の融点をどのように決定するかを学びます。化学者や材料科学者にとって不可欠な情報です。

るつぼの用途とは?高温溶解と分析ガイド

金属の溶解、高温反応、精密分析における冶金、化学、材料科学におけるるつぼの用途を発見してください。

るつぼの長所と短所は何ですか?高温プロセスを最適化する

るつぼの長所と短所(化学的不活性、熱衝撃のリスクなど)と、用途に合った適切な選択方法について学びましょう。

るつぼの選び方は?成功のために材質、温度、用途を合わせる

特定の実験プロセスに合わせて、熱性能、化学的適合性、物理的形状を比較することで、適切なるつぼを選択する方法を学びましょう。

静的腐食試験でアルミナ(コランダム)製るつぼが使用されるのはなぜですか?データの整合性と熱安定性を確保する

高純度アルミナルつぼが静的腐食試験に不可欠である理由を学びましょう。化学的安定性と汚染リスクの最小化を提供します。

るつぼに最適な材料は何ですか?金属にぴったりのるつぼを選びましょう

用途に合ったるつぼの材料を選びましょう。温度、化学的反応性、純度の要件が、金属に最適なるつぼをどのように決定するかを学びましょう。

Lztにはなぜアルミナ製るつぼよりも石英製るつぼが好まれるのですか?純粋な相合成を保証する

LZT焼成に石英製るつぼが不可欠である理由を学び、アルミニウムの拡散や望ましくないAlTaO4不純物相の形成を防ぎましょう。

ガラスカーボンるつぼとアルミナるつぼを選択する際に考慮される要因は何ですか?溶融塩腐食研究の最適化

汚染を防ぎ、正確な合金データを確保するために、溶融塩腐食用のガラスカーボンるつぼとアルミナるつぼのどちらを選択するかを学びましょう。

なぜるつぼには磁器が使われるのか?耐熱性と手頃な価格の理想的なバランスを発見する

一般的な手順において、磁器るつぼが耐熱性、化学的不活性、費用対効果の点で実験室の標準となっている理由を学びましょう。

磁製るつぼとは?高温実験作業のための必須ガイド

実験室での加熱、灰化、融解における磁製るつぼの用途、温度限界、主要な特性について解説します。

グラファイトるつぼの利点は何ですか?優れた高温性能を実現

グラファイトるつぼの主な利点を発見してください:優れた熱安定性、高い機械的強度、そして純粋な溶融物に対する優れた耐薬品性。

黒鉛はるつぼとして使用できますか?高温溶解を成功させる秘訣

黒鉛が極度の耐熱性、化学的不活性、耐久性を提供し、金属溶解や実験作業においてるつぼの最高の選択肢である理由をご覧ください。

カントール合金の溶解プロセス中に高純度アルミナるつぼが必要なのはなぜですか?合金の純度を保証する

カントール合金にとって高純度アルミナルつぼが、汚染を防ぎ、正確な電気化学的試験結果を保証するために不可欠である理由を発見してください。

高純度アルミナるつぼを使用する技術的な利点は何ですか?リン酸ガラスセラミックスの溶解を最適化する

高純度アルミなるつぼが化学的完全性を確保し、溶出を防ぎ、リン酸ガラスセラミックスに熱安定性を提供する方法をご覧ください。

850℃におけるNa2Ni2Teo6およびNa2Zn2Teo6の合成において、高温セラミックるつぼはどのような役割を果たしますか?

850℃におけるNa2Ni2TeO6のセラミックるつぼが、材料の純度、熱安定性、および結晶相転移の成功をどのように保証するかをご覧ください。

Llztoセラミックペレットの焼結にMgoるつぼを使用する理由は何ですか?純度と高いイオン伝導性を確保する

LLZTO焼結において、酸化マグネシウム(MgO)るつぼがアルミナよりも汚染やガラス相形成を防ぐ上で優れている理由をご覧ください。

マッフル炉にはどのるつぼが使用されますか?用途に合った適切な材料を選択する

正確な結果を得るために、温度、化学的不活性、熱衝撃耐性に基づいて最適なマッフル炉るつぼを選択する方法を学びましょう。

化学におけるるつぼの例は何ですか?高温反応に不可欠なツール

化学におけるるつぼについて学びましょう:例、材料(磁器、白金)、および重量分析、灰化、高温反応での使用法。

炭化物融解実験における高純度セラミックるつぼの重要性は何ですか?高温精度を確保する

高純度セラミックるつぼとライナーが、極端な温度での炭化物研究において汚染を防ぎ、構造的完全性を維持する方法を学びましょう。

Nzssp電解質に高温るつぼを使用する必要があるのはなぜですか?化学量論の精密制御

高温るつぼとマザーパウダーがいかに元素の揮発を防ぎ、NZSSP電解質で純粋なNASICON構造を実現するかを学びましょう。

るつぼとその蓋のケア方法は?正確な結果を保証し、損傷を防ぐ方法

初期焼成、トングによる取り扱い、熱衝撃の防止、適切な保管を含む、るつぼケアのための体系的なプロセスを学びましょう。

るつぼの温度範囲は?熱のニーズに合わせて材料を選択してください

るつぼの温度範囲は材質によって異なります。磁器の1200℃からタングステンの3000℃超まで。特定の熱的および化学的ニーズに基づいて選択してください。

るつぼは非常に高い温度に耐えられますか?はい、用途に合った適切な材料を選べば可能です。

グラファイト、セラミック、金属合金のるつぼが、金属溶解用の3000°Cから特殊な実験室での融解まで、どのように極度の熱に耐えるかをご覧ください。

耐熱るつぼとは?高温溶解容器の必須ガイド

耐熱るつぼについて学びましょう:粘土-黒鉛や炭化ケイ素などの材料、その主要な特性、そして研究室に最適なものの選び方。

磁製るつぼの最高使用温度は何度ですか?ひび割れと汚染を防ぐには

磁製るつぼの安全な使用温度(1150°C)、加熱速度の重要な役割、および熱衝撃を防ぐ方法について学びます。

Lipb合金にはなぜ高純度アルミナまたはセラミックるつぼが必要なのですか?純粋で安全な金属加工を保証

鉛リチウム(LiPb)合金の加工において、高純度アルミナが腐食、汚染、構造的破壊を防ぐために不可欠である理由を学びましょう。

るつぼは簡単に壊れますか?熱衝撃と適切な取り扱いを理解する

るつぼは耐久性がありますが、熱衝撃に弱いです。適切な予熱、取り扱い、材料選択で破損を防ぐ方法を学びましょう。

S-Co2腐食実験における高純度アルミナ製ボートとスペーサーの機能は何ですか?データの精度を確保する

高純度アルミナ製ボートとスペーサーが、超臨界CO2試験環境でガルバニック腐食と固相拡散を防ぐ方法を学びましょう。

1273 Kでの石英管内アルミナるつぼの使用理由とは?合金の純度を保護し、酸化を防ぐ

高温熱処理中のサンプル完全性を確保するために、アルミナルつぼと密閉石英管の二重層封入が不可欠である理由を学びましょう。

Lagp合成に高温るつぼが必要な理由は何ですか?ガラスセラミック電解質製造における純度を確保する

LAGPの急冷に白金とアルミナルつぼが不可欠である理由、1300℃を超える高温での腐食と熱への耐性について学びましょう。

液体アルミニウムには石英るつぼよりもアルミナルつぼが推奨されるのはなぜですか?実験の精度を確保する

化学的安定性とデータの純度に焦点を当て、シーバーツ法実験で液体アルミニウムにアルミナルつぼが不可欠である理由をご覧ください。