よくある質問 - 低温アルミナ造粒粉

冷間研削のプロセスとは?メリット、プロセス、用途
低温粉砕が、ハーブ、医薬品、プラスチックなどの熱に敏感な素材に対して、いかに品質を保ち、熱によるダメージを減らし、エネルギー効率に優れているかをご覧ください。
極低温研削とは?効率的な低温材料加工ガイド
発熱の低減、材料劣化の最小化、熱に敏感な材料の効率的な加工など、極低温研削の利点をご覧ください。
カルダモンの低温粉砕とは?高度な技術で風味と品質を高める
氷点下の温度と液体窒素を使用することで、カルダモンの味、香り、薬効を保つ低温粉砕法をご覧ください。
極低温粉砕とは?利点、用途、効率
極低温粉砕が、食品、医薬品、材料科学などの産業において、いかに効率を高め、熱劣化を防ぎ、製品の品質を向上させるかをご覧ください。
極低温ミリングとは?ナノ構造材料のパワーを解き放つ
極低温粉砕によって、発熱や酸化を抑えたナノ構造の粉体がどのように作られるかをご覧ください。先端材料科学に最適です。
ツインスクリュー造粒とは?Tsgで製造プロセスに革命を
二軸スクリュー造粒の利点をご覧ください:連続製造、コスト効率、製品品質の向上など、現代の産業におけるメリットをご紹介します。
極低温加工とは?極低温技術で精密研削を実現
超低温を利用した極低温粉砕により、熱に弱い材料を粉砕し、均一な粒子径と最小限の熱劣化を実現する方法をご覧ください。
クライオミリングの仕組み プロセス、利点とアプリケーションの説明
クライオミリングがどのようにナノ構造の粉末を製造し、熱と酸化を抑制し、極低温環境で材料特性を向上させるかをご覧ください。
加硫の目的は?ゴムの耐久性、弾性、耐性を高める
加硫によってゴムの強度、弾性、環境要因に対する耐性がどのように改善され、産業用途に利用されるかをご覧ください。