光電極半導体特性はP-Mfcの効率をどのように向上させますか?光触媒による廃水処理の強化
半導体光電極がROSと電荷キャリアを生成し、P-MFCシステムで難分解性汚染物質を分解する方法を学びましょう。
多結晶ディスク電極を選択する目的は何ですか?貴金属の腐食研究における精度を達成する
標準化された腐食研究に多結晶ディスク電極が不可欠である理由、均一な電場と正確なデータを提供する理由を学びましょう。
ニッケルめっきの電気化学的腐食性能を評価する際に、補助電極としての白金電極の機能は何ですか?
不活性と安定した電流の流れにより、白金補助電極がニッケルめっきの正確な腐食データをどのように保証するかを学びましょう。
連続フローマイクロリアクターはCo2変換をどのように改善しますか?光電気化学的効率と選択性を最大化する
連続フローマイクロリアクターが、物質移動を強化し拡散限界を低減することで、CO2変換においてバッチシステムをどのように上回るかを学びましょう。
補助電極として白金電極を使用する利点は何ですか?テストデータの整合性を確保する
白金が補助電極のゴールドスタンダードである理由を発見してください。化学的安定性と高い導電性により、腐食試験に最適です。
電気凝固における金属電極の主な機能は何ですか?マイクロプラスチック除去戦略を最適化する
金属電極が犠牲陽極としてどのように機能し、陽イオンを放出してマイクロプラスチックを中和し、効率的な廃水ろ過を促進するかを学びましょう。
アルカリ水電解槽の電極にニッケル系材料が選ばれる理由とは?経済的・技術的優位性
アルカリ水電解槽でニッケル系電極が業界標準となっている理由、すなわち耐食性とコスト効率のバランスについて学びましょう。
有機溶媒溶解におけるAg/Agcl参照電極の役割とは?貴金属の精密な安定性
Ag/AgCl参照電極が有機溶媒中の貴金属溶解に対して安定した電位をどのように提供し、かつ液絡電位を管理するかを学びましょう。
微生物燃料電池の研究において、飽和カロメル電極(Sce)が参照電極として使用されるのはなぜですか?
微生物燃料電池(MFC)の研究において、飽和カロメル電極(SCE)が安定性、精度、およびデータの比較可能性にとって不可欠である理由を学びましょう。
ジルコニア膜参照電極は、Fecral合金の監視においてどのような役割を果たしますか? 288℃でのSccを防止する
ジルコニア膜参照電極が、応力腐食割れ(SCC)を防止するために、288℃でFeCrAl合金の安定したECP監視をどのように可能にするかを学びましょう。
Cgdeにおいて、鋼と比較してタングステン電極はどのような利点がありますか? 優れた安定性・耐薬品性
塩素が豊富なCGDEにおいて、タングステンが鋼よりも優れている理由を、塩化金属の生成を防ぎ、極端な熱応力に耐えることで学びましょう。
溶接サンプルに対する電気化学的腐食試験で、標準的な三電極系が必須であるのはなぜですか?
高精度な電気化学データを取得するためにIRドロップを排除する、溶接腐食試験における三電極系の重要性について学びましょう。
アルカリHer試験でPtfe材料が指定されるのはなぜですか?高純度触媒性能と精度を確保する
汚染を防ぎ、真の触媒安定性を確保するために、PTFEがアルカリ水素発生反応(HER)試験に不可欠である理由を学びましょう。
回転ディスク電極(Rde)システムはなぜ不可欠なのですか?バイオマス炭素電極触媒におけるOrr性能をマスターする
ORRの秘密を解き明かす:RDEシステムが拡散限界を排除し、バイオマス炭素触媒活性と速度論を正確に測定する方法を学びましょう。
ステンレス鋼の試験における白金電極を対極として選択する理由は何ですか?デュプレックスステンレス鋼試験における純粋なデータを保証する
白金がデュプレックスステンレス鋼試験の標準的な対極である理由を学びましょう。化学的不活性と優れた導電性を提供します。
ガラス参照電極の機能的安定性と構造的完全性を維持するにはどうすればよいですか?専門家ガイド
電解液の交換や安全な化学洗浄方法など、ガラス参照電極の必須メンテナンス手順を学びましょう。
水電解にゲル型Ag/Agcl参照電極が推奨されるのはなぜですか?高い安定性と精度を確保
ゲル型Ag/AgCl電極が、泡の干渉やイオンシフトを軽減することで、水電解中の測定をどのように安定させるかを学びましょう。
補助電極として白金線が選ばれるのはなぜですか?不活性電極で高精度な腐食データを取得する
白金の化学的不活性と導電性が、信頼性の高い汚染のない腐食試験に理想的な補助電極である理由を学びましょう。
電解セルとその支持電極システムは、酸化チタンナノチューブアレイの性能にどのように影響しますか?
電解セルの安定性と電極の精度が、TiO2ナノチューブアレイの成長、配向、効率をどのように制御するかを学びましょう。
H型電解セルで使用される電極の種類は?3電極システムのエキスパートガイド
正確な実験のための作業電極、対極、参照電極を含む、H型電解セルにおける3電極システムについて学びましょう。
白金対極の機能とは?酸化ルテニウム薄膜試験における純粋なデータを確保する
白金対極が、正確な酸化ルテニウム性能評価のために化学的安定性と信号完全性を提供する方法を学びましょう。
参照電極の機能とは? 3電極リアクター再構築における精密制御
参照電極が作用電極の電位を分離し、干渉を除去し、電気化学リアクターの精度を確保する方法を学びましょう。
イリジウム・タンタル・チタン酸素発生電極はどのような分野に応用されていますか?トップ6の産業用途
Ir-Ta-Ti電極が酸性および硫酸ベースの環境における金属めっき、廃水処理、電気合成をどのように最適化するかをご覧ください。
H型電解セルの電極はどのように維持管理すべきか?精度と長寿命のための必須ガイド
H型電解セル電極のクリーニング、保管、校正プロトコルを含む、最適な維持管理方法を学びましょう。
3電極電解セルシステムにおける高純度白金対極の役割は何ですか? Pdla/Ato触媒の正確なテストを実現する
電解セルでのPdLa/ATO触媒テストにおいて、高純度白金電極がデータの一貫性と安定した電流ループをどのように保証するかをご覧ください。
電極の例は何ですか?電力と性能の架け橋
亜鉛やグラファイトのような一般的な電極の例、バッテリーや電気分解におけるそれらの役割、そして用途に合った適切な材料の選び方について解説します。
白金電極が陰極として必要なのはなぜですか?光触媒膜成長における精度を確保する
電気化学的陽極酸化において白金電極が不可欠である理由、安定した電流と精密なナノチューブアレイ成長を保証する方法を学びましょう。
白金メッシュを対極として使用する利点は何ですか?電気化学システムにおける精度を最適化する
白金メッシュが理想的な対極である理由を学びましょう。表面積が広く、化学的に不活性で、均一な電流分布を提供します。
H2O2燃料電池研究におけるグラファイトを用いた三電極システムの利点は何ですか?データ精度を確保する
三電極グラファイトシステムがiR降下と金属汚染を排除し、燃料電池触媒の正確な特性評価を可能にする方法をご覧ください。
単一粒子の電気化学的固定具は、固定床内の個々の粒子の性能分析にどのように役立ちますか?正確な粒子インサイトを解き明かす
単一粒子の電気化学的固定具が粒子を分離し、酸化還元電位と電流密度をマッピングして、リアクターの最適化を向上させる方法を学びましょう。
白金と比較して、セラミックカーボン電極(Cce)にはどのような利点がありますか?銅-塩素サイクルの効率を高め、コストを削減します。
3D多孔質構造とアミノシランベースのネットワークを使用して、銅-塩素サイクルにおいてセラミックカーボン電極(CCE)が白金よりも優れた性能を発揮する方法をご覧ください。
補助電極として白金メッシュを使用する利点は何ですか?高精度な水素吸蔵を保証します。
陰極水素吸蔵のゴールドスタンダードである白金メッシュが、比類のない化学的不活性と電流均一性を提供する理由をご覧ください。
ニッケルクロム合金実験における精度確保:白金箔を対極として選択する利点は何ですか?
白金箔がニッケルクロム合金の溶解に理想的な対極である理由を発見してください。比類のない化学的不活性とデータの信頼性を提供します。
Mfcにはなぜ高純度のAg/Agcl参照電極が必要なのですか?微生物燃料電池の試験における精度を確保する
Ag/AgCl参照電極がハーフセル電位の分離と微生物燃料電池の性能診断に不可欠である理由を学びましょう。
Mecのアノード材料として黒鉛ブラシと炭素フェルトが選ばれる理由は何ですか?バイオ燃料のパフォーマンスを最適化する
MECアノードの業界標準である黒鉛ブラシと炭素フェルトが、バイオフィルム密度と電子伝達効率を最大化する理由をご覧ください。
多孔質グラファイトロッドが、改質カーボンペーパー電極の試験用対極として選ばれるのはなぜですか?
正確なデータとゼロ分極を保証する、電気化学的試験における優れた対極選択肢である多孔質グラファイトロッドの理由をご覧ください。
精密コーティングと多段階熱処理は、どのようにしてスーパーキャパシタ電極の性能を保証するのか?専門家ガイド
精密コーティングと40℃/120℃/160℃の熱処理が、ココナッツ殻由来活性炭電極の安定性をどのように最適化するかを学びましょう。
魚粉廃水処理におけるTi/Ruo2電極の主な利点は何ですか?Toc除去効率を最大化する
高触媒活性と汚泥生成量の削減により、ルテニウムコーティングされたチタンアノードが魚粉廃水処理をどのように強化するかをご覧ください。
白金化チタンメッシュを使用する利点は何ですか?触媒効率と耐久性の向上
白金化チタンメッシュ電極が、高表面積、耐食性、低過電圧により効率をどのように向上させるかをご覧ください。
ガス拡散電極(Gde)テストセットアップは、回転ディスク電極(Rde)と比較してどのように異なりますか?実際の条件をシミュレートする
電気分解槽のテストにおけるGDEとRDEを比較します。高電流密度と産業的安定性のシミュレーションにおいてGDEセットアップが優れている理由を発見してください。
ステンレス鋼304を電極材料として選択する際の主な考慮事項は何ですか?安全な水質管理を確保する
ステンレス鋼304が冷却水処理に理想的な犠牲陽極である理由を、耐食性と塩素フリーの安全性に焦点を当てて学びましょう。
ガス拡散電極におけるPtfeの機能とは?Co2電解セルの安定性をマスターする
PTFEがいかにして濡れ性を制御し、電極の浸水を防ぎ、CO2電解セルにおける三重相界面を維持するかをご覧ください。
高純度グラファイト電極を陰極として使用する利点は何ですか?マイクロアーク酸化セットアップを最適化する
高純度グラファイト電極が、プロセスの安定性を確保し、電解液の汚染を防ぐことで、マイクロアーク酸化をどのように強化するかを学びましょう。
MecにとってAg/Agcl参照電極はなぜ必要なのでしょうか?研究における正確なベースライン安定性を確保しましょう。
Ag/AgCl参照電極がMEC特性評価に不可欠である理由、安定したベースラインと正確な過電圧データを提供する仕組みを学びましょう。
鉛二酸化チタン酸素発生電極の主な用途は何ですか?工業用酸化を強化する
PbO2-Ti電極が、高い酸素発生電位で廃水処理、電気合成、冶金分野でどのように優れているかをご覧ください。
Corr安定性試験でフローセルとGdeが使用されるのはなぜですか? 産業グレードの触媒性能を実現
フローセルとGDEがいかにCO溶解度の限界を克服し、長期の一酸化炭素電気還元試験の安定性を維持するかをご覧ください。
薄層分光電気化学セルにはどの電極タイプが適合しますか?ハードウェアの適合性を最適化する
分光電気化学セル用のAg/AgCl参照電極、Ptワイヤー対極、Ptメッシュ作用電極の正確な仕様を学びましょう。
使用後のカーボンクロスとカーボンペーパーはどのように洗浄すべきですか?適切な手入れで材料の完全性を保つ
カーボンクロスとカーボンペーパーを脱イオン水で洗浄する正しい方法を学び、損傷を避け、実験室でのアプリケーションで信頼性の高い性能を確保しましょう。
白金チタン機能電極の仕様は何ですか?電気化学的性能を最大化するには
Pt-Ti電極の主要な仕様を学びましょう:白金コーティング(0.3~10μm)、貴金属含有量15g/m²超、最適な性能のための電流密度20,000A/m²未満。
使用前に黒鉛電極をどのように前処理すべきですか?信頼性の高い電気化学データを確保するために
機械研磨やすすぎ洗いを含む、黒鉛電極の前処理の必須手順を学び、正確な実験のためにクリーンで再現性のある表面を実現する方法を習得します。
カーボンクロス(炭素布)の電解液濡れ性を向上させるにはどうすればよいですか?優れた電気化学的性能を引き出す
酸処理とNAFIONコーティングによるカーボンクロスの電解液濡れ性向上の方法を学び、デバイス効率、電力密度、容量の改善を実現しましょう。
電気化学支援ハイドロサーマル合成における金属電極の役割は何ですか?低温コーティングの専門家
金属電極が低温(200°C未満)で多結晶酸化物膜の析出を可能にし、基板の損傷を防ぎ、エネルギーを節約する方法を学びましょう。
Sceとルギン毛細管を組み合わせる目的は何ですか?精密な電気化学試験のためのIrドロップの最小化
飽和カロメル電極とルギン毛細管を組み合わせることで、オーム降下を低減し、正確な電気化学測定を保証する方法をご覧ください。
高純度白金箔電極の機能は何ですか? Tio2ナノチューブ陽極酸化をマスターする
高純度白金箔電極が陽極酸化プロセスを安定させ、垂直配向したTiO2ナノチューブの成長を確実に保証する方法を学びましょう。
Ods鋼の腐食に飽和カロメル電極(Sce)が選ばれる理由とは?安定した電気化学的ベンチマーキングを実現する
SCEがODSフェライト鋼の腐食試験におけるゴールドスタンダードである理由を学び、EcorrとEbを正確に測定するために必要な安定した電位を提供します。
低濃度廃水におけるスパイラル巻き電極の機能とは?貴金属回収効率を最大化する
スパイラル巻き電極がどのように物質移動限界を克服し、希薄な廃水流からの完全な金属回収を実現するかを学びましょう。
白金電極を対極として使用する意義は何ですか?高純度Bi2O3-Go合成を確実にします
Bi2O3-GO薄膜合成において白金電極が不可欠である理由を学びましょう。化学的安定性と高導電性を提供し、純粋な結果をもたらします。
Sc1/3Zr2(Po4)3のキャリア検証において、白金電極は具体的にどのような機能を持っていますか?電荷キャリアを確認します。
白金ブロッキング電極が、イオンの蓄積と還元を通じてSc1/3Zr2(PO4)3のキャリアタイプ検証をどのように可能にするかを学びましょう。
Ti/Ruo2-Iro2-Sno2電極の準備において、制御された最終焼鈍プロセスが必要なのはなぜですか?耐久性の鍵
結晶化、結合、耐食性を確保するために、Ti/RuO2-IrO2-SnO2電極にとって制御された焼鈍が不可欠である理由を学びましょう。
ステンレス鋼の微細構造を明らかにするために使用される電解エッチングプロセスにおける白金電極の役割は何ですか?
Learn how platinum electrodes provide chemical stability and stable current distribution for precise stainless steel electrolytic etching results.
17-4 Phステンレス鋼の分析に白金(Pt)対極が必要なのはなぜですか?データの整合性を確保してください。
白金の化学的不活性と導電性が、17-4 PHステンレス鋼の正確な電気化学試験に不可欠である理由を学びましょう。
Zr2.5Nb合金にガラス製電気化学セルとプレキシガラス製蓋が使用されるのはなぜですか?腐食試験の精度を確保する
Zr2.5Nb合金の腐食評価とリンガー液の安定性にとって、特殊なガラスセルとプレキシガラス製蓋がなぜ重要なのかを学びましょう。
白金電極とAg/Agcl参照電極で構成されるシステムは、アルミニウム箔の浸出プロセスを監視する上でどのように機能しますか?
アルミニウム箔浸出における酸化活性の監視と酸化剤使用量の最適化のために、白金電極とAg/AgCl電極がどのように連携して機能するかを学びましょう。
ジルカロイ-2試験における白金電極の役割は何ですか?高純度電気化学測定結果を保証する
ジルカロイ-2試験において、高純度白金がなぜ不可欠な対極であるのか、データ整合性と電解質純度を保証する理由を学びましょう。
液体金属電気化学腐食セルにおける高強度ステンレス鋼るつぼの二重機能とは何ですか?
LBE合金の腐食試験において、ステンレス鋼るつぼが容器および対極の両方としてどのように機能するかをご覧ください。
塩化物溶融塩試験で白金(Pt)電極が使用されるのはなぜですか? 720℃でのデータ完全性の確保
高温溶融塩試験において、化学的安定性と精度を提供する必須の電極材料として白金(Pt)が選ばれる理由をご覧ください。
プルトニウム硝酸塩の腐食研究における、ヒーターとサーモスタットを備えたガラス電解セルの役割は何ですか?
精密な温度制御を備えたガラス電解セルが、プルトニウム硝酸塩の腐食および安全性試験における極限環境をどのようにシミュレートするかをご覧ください。
スリーエレク​​トロードセルにおける白金対極の役割とは? データ純度と回路安定性の確保
白金対極が、正確なポテンショダイナミック分極および電気化学的試験において、不活性な電流導体としてどのように機能するかを学びましょう。
燃料電池用のカーボンペーパーはどのように処理されますか?最高の性能を引き出すためのPtfeコーティングの重要性
PTFEコーティングがカーボンペーパーを疎水性のガス拡散層(GDL)に変え、水の溜まりを防ぎ、効率的な燃料電池の動作を保証する方法を学びましょう。
マイクロプラスチック電気凝固におけるアルミニウム電極の利点は何ですか?処理と耐久性の向上
電気凝固において、鉄よりもアルミニウム電極が優れている理由、すなわち、より高いCOD除去率とより低いメンテナンス性を水処理で発見してください。
実験室用回転ディスク電極(Rde)は、銅ナノキューブの再構築評価をどのように容易にしますか?
RDEが質量移動限界を排除し、精密な電気化学的表面速度論とCVスキャンを通じて銅ナノキューブの再構築を分析する方法を学びましょう。
全固体電池のサイクル試験に外部圧力治具が不可欠な理由
全固体電池のサイクル試験において、剥離を防ぎイオン接触を維持するために外部圧力治具が不可欠である理由を学びましょう。
白金電極とAg/Agcl電極の具体的な機能は何ですか?電気化学的試験の最適化
電気化学セルにおける精度維持のために、対極としての白金の重要な役割と参照電極としてのAg/AgClの役割を学びましょう。
EogにおけるOrr(酸素還元反応)にガス拡散電極(Gde)が不可欠な理由とは?今すぐ酸素生成を最適化しましょう。
ガス拡散電極(GDE)が溶解度限界を克服し、電気化学的酸素発生器(EOG)で高電流密度を可能にする方法をご覧ください。
Ag/Agcl電極と白金電極の役割とは?電気化学測定システムの精度を向上させる
Ag/AgCl参照電極が安定した基準電位を提供し、白金対極が電気化学研究における電流を駆動する方法を学びましょう。
なぜ皮革廃水処理に鉄電極が使用されるのですか?効率的な電気凝固および電気フェントン処理
物理的凝固と高度な化学酸化を組み合わせた皮革廃水処理に鉄電極が不可欠である理由を学びましょう。
マンガン酸化物陰極の電流コレクターとして炭素紙が一般的に選ばれるのはなぜですか?バッテリー効率を解き放つ
炭素紙の導電性、多孔性、安定性が、亜鉛イオン電池のMnO2陰極にとって理想的な電流コレクターである理由を発見してください。
Ac浸出における高純度グラファイト電極の主な機能は何ですか?効率的な金属回収を実現する
高純度グラファイト電極が不溶性の導電媒体として機能し、AC電気化学浸出を駆動して貴金属を回収する方法を学びましょう。
標準化された電気化学試験セルは、Mox/Cntf電極のスクリーニングにどのように役立ちますか?材料比率の最適化
標準化された電気化学試験セルが、CV、GCD、EISを介してMOx/CNTf電極の性能を評価し、効率的なスクリーニングを実現する方法をご覧ください。
オキサゾリン阻害剤の電気化学的試験において、補助電極として白金が一般的に選択されるのはなぜですか?
白金の化学的不活性と導電性が、正確なオキサゾリン阻害剤の電気化学的試験において最良の選択肢となる理由をご覧ください。
白金電極を対極として使用する利点は何ですか?水素チャージにおける純度を確保する
酸性電解質において白金が対極として標準とされる理由、すなわち化学的不活性と優れた導電性についてご紹介します。
3電極システムはどのような機能を持っていますか?Cpセンサーの精密な膜成長をマスターする
導電性ポリマーセンサー膜の厚さ、形態、ドーピングを制御して優れた性能を実現する方法を学びましょう。
白金対極を使用する利点は何ですか?光触媒コーティング堆積における純度を確保する
白金対極が電気めっきに不可欠である理由を学びましょう。化学的不活性、高い導電性、不純物のないコーティングを提供します。
魚粉排水の電気酸化を電極間隔の調整で最適化するにはどうすればよいですか?エネルギー効率を最大化する
電極間隔を1.5cmに最適化することで、電気抵抗とセル電圧が低下し、魚粉排水処理のエネルギーコストが削減される仕組みを学びましょう。
全Ptfe電解セルシステムで使用される電極の種類は?電気化学分析を最適化する
高精度研究用の全PTFE電解セルで使用される3電極アーキテクチャ(作用電極、対極、参照電極)について学びましょう。
高精度バッテリーテストシステムと電気化学ワークステーションを使用する目的は何ですか? | バッテリーの洞察を解き明かす
高精度テストシステムと電気化学ワークステーションが、改質バッテリー電極の耐久性と速度論をどのように検証するかを学びましょう。
(非)コルベ電解において、白金電極がアノードとして好まれるのはなぜですか?バイオマスアップグレードの選択性を向上させる
バイオマスアップグレードにおけるコルベ電解で白金電極が選ばれる理由を、高い酸素発生過電圧と耐久性から学びましょう。
チタン電極を使用する際の重要な注意点は何ですか?電極の寿命を最大化するためのプロのヒント
コーティングの保護、極性ルール、化学物質の安全性を含む、チタン電極の不可欠な安全およびメンテナンスプロトコルについて学びましょう。
白金(Pt)対極とAg/Agcl参照電極の役割とは?電気化学試験における精密測定をマスターする
正確な電気化学的電流および電位測定に白金対極とAg/AgCl参照電極が不可欠である理由を学びましょう。
銅箔に電解研磨を施す目的は何ですか?Cvdグラフェン&Hbn成長表面を最適化する
銅箔の電解研磨が表面粗さを低減し、酸化物を除去して、高品質なグラフェンとhBNのCVD成長を保証する方法を学びましょう。
Ag/Agcl参照電極と白金線は、(U1−Xthx)O2薄膜の酸化研究においてどのような役割を果たしますか?
(U1−xThx)O2薄膜の正確な酸化メカニズム解析を可能にするAg/AgCl参照電極と白金対極について学びましょう。
ステンレスメッシュ製対極の使用はLsv試験をどのように改善しますか?表面積の増加による精度の向上
ステンレスメッシュ(SSM)が表面積を増やし、分極抵抗を低減することで、直線掃引ボルタンメトリーをどのように改善するかをラボテストで学びましょう。
3電極システムにおける白金対極とAg/Agcl参照電極の役割
白金対極とAg/AgCl参照電極が、精密な電気化学分析のために電流と電圧をどのように分離するかを理解する。
外部圧力平衡型Ag/Agcl電極とソル​​トブリッジは、Hthp試験の課題をどのように解決しますか?
外部圧力平衡型Ag/AgCl電極と非等温ソルトブリッジが、高温高圧ラボでの安定性をどのように確保するかをご覧ください。
塩素酸製造でルテニウム・チタンMmo電極が好まれるのはなぜですか? 効率と耐久性を最適化する
ルテニウム・チタンMMOアノードが、優れた触媒性能により塩素酸製造におけるエネルギーコストを削減し、腐食に抵抗する方法を学びましょう。
ジルコニウム試験に白金(Pt)電極を使用する利点は何ですか?高精度のデータ整合性を確保
ジルコニウムの分極曲線試験に白金電極が不可欠である理由、すなわち化学的安定性と優れた導電性について学びましょう。
電気化学反応器セルに工業用グレードのPtfeを使用する利点は何ですか?化学的安定性を最大限に確保する
工業用グレードのPTFEが電気化学的染料分解に理想的な素材である理由を発見してください。比類のない耐薬品性と純度を提供します。
チタン電極上の白金被覆は、コルベ電解にどのように影響しますか?ピーク収率のために100%の完全性を確保してください。
露出したチタンが1〜3%でコルベ電解の効率が50%低下する理由と、電極性能を最適化する方法を学びましょう。
Eisでステンレス鋼ブロッキング電極を使用する目的は何ですか?バルク抵抗と導電率の分離
電解質バルク抵抗を分離し、正確なイオン導電率を計算するために、EISにおいてステンレス鋼ブロッキング電極が不可欠である理由を学びましょう。
メッキ電極の物理的な研磨プロセスが禁止されているのはなぜですか?金および白金製実験装置を保護する
物理的な研磨がメッキ電極を破壊する理由と、金、白金、銀メッキ表面を研究用に適切に維持する方法を学びましょう。