あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
スーパー密閉電解電気化学セル
金属水素予備充電における電解セルシステムの役割は何ですか?Kintekで材料試験をスピードアップ
電解セルが陰極充電を使用して強制水素注入を行い、脆化をシミュレートし、金属の耐久性を効率的にテストする方法を学びましょう。
3電極式電解セルシステムはどのように精度を確保しますか?アルミナ複合材の腐食試験を最適化する
3電極式システムが電圧測定を電流の流れから分離し、アルミナの電気化学的腐食データを正確に保証する方法を学びましょう。
Corr安定性試験でフローセルとGdeが使用されるのはなぜですか? 産業グレードの触媒性能を実現
フローセルとGDEがいかにCO溶解度の限界を克服し、長期の一酸化炭素電気還元試験の安定性を維持するかをご覧ください。
ニッケル基超合金の回収において、隔膜電解槽はどのような役割を果たしますか?専門家の洞察
隔膜電解槽がニッケル基合金および難溶性金属の選択的溶解と一次分離をどのように可能にするかをご覧ください。
二相ステンレス鋼の腐食試験における電極の役割は何ですか?正確な材料分析を保証する
鋼の正確な腐食試験のための三電極システムにおける作用電極、対極、参照電極の具体的な役割を学びましょう。
H2O2燃料電池研究におけるグラファイトを用いた三電極システムの利点は何ですか?データ精度を確保する
三電極グラファイトシステムがiR降下と金属汚染を排除し、燃料電池触媒の正確な特性評価を可能にする方法をご覧ください。
3電極電解セルシステムにおける高純度白金対極の役割は何ですか? Pdla/Ato触媒の正確なテストを実現する
電解セルでのPdLa/ATO触媒テストにおいて、高純度白金電極がデータの一貫性と安定した電流ループをどのように保証するかをご覧ください。
9% Cr鋼の水素拡散研究において、二重室電気化学透過セルはどのような役割を果たしますか?
二重室電気化学透過セルが9% Cr鋼の水素フラックスと拡散係数を分離・測定する方法を学びましょう。
In Situ分光電気化学セルの機能とは?リチウム・二酸化炭素電池の反応メカニズムを解明する
in situ分光電気化学セルが、リチウム・二酸化炭素電池の研究における炭酸リチウム(Li2CO3)の生成と分解をリアルタイムで追跡することを可能にする方法を学びましょう。
ゼロギャップ電解セルにおいて、Pps製織布セパレーターに要求される特定の機械的・物理的特性は何ですか?
ゼロギャップ電解セルにおけるPPSセパレーターにとって、圧縮強度、寸法安定性、表面適合性がなぜ不可欠なのかを学びましょう。
薄層分光電気化学セルを長持ちさせるには、どのように取り扱うべきですか?専門家によるメンテナンスのヒント
統合型石英分光電気化学セルの寿命を延ばすための、取り扱い、洗浄、保管の必須プロトコルを学びましょう。
放射性セル試験に銀/塩化銀(Ag/Agcl)電極が使用されるのはなぜですか?安定性と精度を確保する
Ag/AgCl参照電極が放射性電解セル試験に不可欠である理由を発見してください。アルカリ性媒体で比類のない安定性を提供します。
単独でのHi分解に二室H型電解セルが必要なのはなぜですか?正確な速度論データを保証する
二室H型セルが反応環境を分離し、外部バイアスなしでHI分解の正確な測定を可能にする方法を学びましょう。
電解セルとその支持電極システムは、酸化チタンナノチューブアレイの性能にどのように影響しますか?
電解セルの安定性と電極の精度が、TiO2ナノチューブアレイの成長、配向、効率をどのように制御するかを学びましょう。
藻類燃料電池(Algae Fuel Cells)において、H型二室型リアクターはどのような実験的有用性を提供しますか?精密な研究を実現する
H型二室型リアクターが、AFCの研究開発においてどのように変数を分離し、微細藻類株を最適化し、精密な電気化学測定を提供するかを学びましょう。
黒鉛剥離における電解セルの主要機能は何ですか? エンジニアリンググラフェン製造
電解セルと電極システムがイオンインターカレーションをどのように促進し、調整可能な材料特性を持つ高品質グラフェンを製造するかを学びましょう。
二重ループ電気化学ポテンシオキネティック再活性化(Dl-Epr)試験において、スーパー二相ステンレス鋼の測定精度は電気化学セルシステムによってどのように確保されますか?
ステンレス鋼の電極安定性と脱酸素化により、DL-EPR試験における電気化学セルシステムがどのように精度を達成するかを学びましょう。
3電極システムはどのような機能を持っていますか?Cpセンサーの精密な膜成長をマスターする
導電性ポリマーセンサー膜の厚さ、形態、ドーピングを制御して優れた性能を実現する方法を学びましょう。
カスタマイズされた三電極電解セルシステムは、触媒の長期安定性試験をどのように容易にしますか?
カスタマイズされた電解セルが、精密な定電流制御を使用して水電解触媒の1,000時間の安定性試験を可能にする方法をご覧ください。
研磨されたガラス状炭素ディスクが作用電極基板として使用されるのはなぜですか?電気化学エッチングにおける精度を確保する
ガラス状炭素の化学的不活性、高い導電性、滑らかな表面が、電気化学実験の理想的な基板となる理由を学びましょう。
Eco2Rrにはなぜカスタム電気化学フローセルが使用されるのか?工業グレードの性能と電流密度を実現
フローセルがH型セルよりもeCO2RRで優れている理由を、物質移動限界を克服して400 mA cm⁻²の電流密度を達成する方法を学びましょう。
鉛精鉱浸出におけるMsa効率を隔膜電解槽はどのように向上させるか?化学ループの最適化
隔膜電解槽が、反応の分離、エネルギー浪費の防止、溶媒再生の確保によって鉛精鉱浸出を強化する方法を学びましょう。
Niti合金試験における高精度電気化学セルの主な役割は何ですか?生体適合性と安全性を確保する
高精度電気化学セルが生体環境をどのようにシミュレートし、多孔質NiTi合金の耐食性を評価するかを学びましょう。
改質アルミニウムアノードの調製において、電解セルはどのような役割を果たしますか?リチウム拡散の最適化
電解セルがアルミニウムアノードへのニッケル析出を精密に制御し、均一なリチウム拡散と安定した合金化反応を保証する方法を学びましょう。
薄層分光電気化学セルを用いた実験を開始する前に、どのような準備手順が必要ですか?
洗浄、電極のセットアップ、電解液の脱酸素に関するガイドで、薄層分光電気化学セルの準備をマスターしましょう。
マンガン電析において、恒温三電極電気化学セルシステムが利用されるのはなぜですか?
マンガン電析における精度、速度論、形態形成において、熱安定性と三電極システムが重要である理由をご覧ください。
トリチウム濃縮のための精密電解槽に求められる重要な設計要件は何ですか?
トリチウム分析のための、定電流制御やULT冷却を含む、精密電解槽に不可欠な設計要件を学びましょう。
炭素鋼に専用の電気化学試験セルが必要なのはなぜですか?地熱腐食データを正確に保証する
地熱環境における炭素鋼の評価に専用試験セルが不可欠な理由、嫌気性制御と固定電極形状の確保について学びましょう。
フラット電気化学セルの設計上の利点は何ですか?腐食試験の精度を高める
フラット電気化学セルが、表面積を隔離し、エッジ効果を排除することで、窒化ステンレス鋼の試験をどのように改善するかをご覧ください。
13CrやP110のような合金の腐食試験のために、3電極電気化学セルはどのように構成されますか?
正確なデータを取得するために、作用電極、対極、参照電極を使用した13CrおよびP110の腐食試験用の3電極セルの構成方法を学びましょう。
Swagelokタイプセルモールドは、バッテリーテストにおいてどのような機能を持っていますか?インターフェース圧とデータ精度を最適化する
Swagelokタイプセルモールドが、インターフェース圧を最適化し、反応性材料を隔離することで、バッテリー研究におけるデータ精度をどのように確保するかをご覧ください。
Ods鋼の腐食に飽和カロメル電極(Sce)が選ばれる理由とは?安定した電気化学的ベンチマーキングを実現する
SCEがODSフェライト鋼の腐食試験におけるゴールドスタンダードである理由を学び、EcorrとEbを正確に測定するために必要な安定した電位を提供します。
マンガン電解槽に不織布層が必要な理由は何ですか?高純度金属の生産を保証する
不織布隔膜がpH安定性、加水分解の防止、マンガンセルでの電流効率の最大化に不可欠である理由を学びましょう。
ゼロギャップCo2還元におけるイオン交換膜の役割とは?選択的輸送のエンジンをマスターする
CO2還元電解槽におけるファラデー効率を最大化するために、イオン交換膜が固体電解質および選択的ゲートキーパーとしてどのように機能するかを学びましょう。
特殊な電解採取セルはどのような主な機能を果たしますか?金の回収率と純度を最適化する
特殊な電解採取セルが、電気化学的還元と流量の最適化を通じて、チオ尿素溶液から高純度の金を回収する方法を学びましょう。
海水電解セルにおける隔膜の主な機能は何ですか?安全性と効率の向上
海水電解セル内の隔膜が、ガスを隔離して安全性を確保し、選択的なイオン伝導によって効率を可能にする方法を学びましょう。
3電極式電気化学腐食セルの役割とは?クロムめっきの耐久性を検証する
3電極システムとポテンショダイナミック分極試験により、めっきのピッティング電位と防食性能を定量化する方法を学びましょう。
薄層分光電気化学セルを使用する際に、電圧と極性に関してどのような注意が必要ですか?
電極を保護するために、薄層分光電気化学セルにおける電圧制御と極性整合に関する重要な安全のヒントを学びましょう。
Cl-Eaopにおける分割電気化学リアクターの機能とは?高度な廃水処理の推進
分割電気化学リアクターが、ヒドロキシルラジカルと活性塩素種を介してCl-EAOPを推進し、汚染物質を分解する方法を学びましょう。
カスタマイズされた可視化テストセルの設計上の特徴は何ですか?オペランドバッテリーの洞察を解き放つ
サファイア窓や圧力機構など、オペランドバッテリー研究用の可視化テストセルの設計上の特徴を探る。
Tisicnコーティングの評価において、飽和Ag/Agcl電極はどのような役割を果たしますか?測定精度の確保
飽和Ag/AgCl電極が、TiSiCNコーティングの安定性と耐食性を評価するために不可欠な安定電位をどのように提供するかを学びましょう。
三電極セルでフリットガラス管を使用する目的は何ですか?バナジウムレドックス試験の精度向上
フリットガラス管が電極を分離し、相互汚染を防ぎ、正確なバナジウムレドックスカップルの電気化学測定を保証する方法を学びましょう。
トリチウム濃縮における電解セルの機能は何ですか?低レベル分析のための検出ブースト
電解セルが同位体分離を通じてトリチウムを濃縮し、環境水の正確な放射能測定を可能にする方法を学びましょう。
シリカ添加ポリエチレン膜セパレーターを使用する必要性は?モリブデン溶解効率の最適化
シリカ添加セパレーターがモリブデン溶解に不可欠である理由、イオン保持と陰極析出の防止について学びましょう。
Nvpf試験において、Swagelokタイプセルモールドはどのような課題に対応しますか?精密な圧力とシーリングで精度を向上
Swagelokタイプセルモールドが、信頼性の高いNVPF電気化学試験を保証するために、接触抵抗と電解液漏洩の問題をどのように解決するかをご覧ください。
固体酸化物電解セル(Soec)は、どのようにしてエネルギー効率を高めているのでしょうか?優れた水素製造を実現する
SOEC技術が、高温熱力学と産業廃熱を利用して水素製造の電力需要を33%削減する方法をご覧ください。
フロー電解セルの利点は何ですか?ナノマテリアル合成の精密かつ効率的なスケールアップ
ナノマテリアル合成におけるフロー電解セルとバッチリアクターを比較します。フローセルが伝熱と混合の課題をどのように解決するかを学びます。
Ocpに透明電解セルを使用する利点は何ですか?腐食のリアルタイム視覚モニタリング
透明電解セルが、表面の視覚的変化と電気化学的データを相関させることで、OCP測定をどのように強化するかを発見してください。
Xas電気化学セルにポリ(エテリ ルエーテルケトン)(Peek)が選ばれる理由は何ですか?化学的安定性と精度を確保する
PEEKがXASの電気化学セル本体に理想的な素材である理由を発見してください。耐薬品性、強度、精密加工性を提供します。
310Hステンレス鋼用電解エッチングシステムの目的は何ですか?精密な微細構造の詳細を明らかにする
10%シュウ酸を用いた電解エッチングが、310Hステンレス鋼のオーステナイト粒、炭化物析出物、結晶粒界をどのように明らかにするかを学びましょう。
トリチウム濃縮における電解槽の機能は何ですか? 水質分析における検出限界の向上
専門的な電解槽が、正確な環境水質分析と検出のためにトリチウム濃度を10〜15倍に濃縮する方法をご覧ください。
白金(Pt)線作为对电极的优点是什么?确保高精度电化学
了解为什么铂金线是铂金线作为对电极的黄金标准,它具有化学惰性、高导电性和数据完整性。
粗糙或微纳结构电极表面如何提高效率?解锁防污电解动力
了解微纳结构电极如何防止气体遮蔽和有机污垢,从而提高(非)科尔贝电解的效率和稳定性。
銅塩素サイクル電解槽におけるゼロギャップ構成の実装はなぜ重要なのでしょうか?
銅塩素サイクル電解槽におけるゼロギャップ構成が、オーム抵抗を低減し、水素製造のエネルギー効率を向上させる方法をご覧ください。
三電極電気化学試験システムにおいて、白金(Pt)シートが対極として使用されるのはなぜですか?
カウンター電極のゴールドスタンダードとして、化学的不活性と優れた導電性を提供する白金シートが選ばれる理由をご覧ください。
Mecモニタリングにおける飽和カロメル電極(Sce)の役割は?解毒のためのキネティクス最適化
SCEが微生物電解セル(MEC)で安定した基準として機能し、半電位を分離し、反応速度論を最適化する方法を学びましょう。
ウォールジェットアンペロメトリーセルが検出ユニットとして使用されるのはなぜですか?高感度リアルタイムモニタリングの説明
ウォールジェットアンペロメトリーセルが、動的な濃度検出のための迅速な応答時間と優れた物質移動により、オンラインモニタリングをどのように強化するかをご覧ください。
Na金属電池のテストにカスタマイズされたスプリングロード式圧力セルが必要なのはなぜですか?信頼性の高いサイクリングデータを確保する
インターフェースの剥離やインピーダンスのスパイクを防ぐために、ナトリウム金属電池のサイクリングに一定の3 MPaの積層圧が不可欠である理由を学びましょう。
Devanathan-Stachurskiセルの機能は何ですか?マルテンサイト中の水素拡散の特性評価
Devanathan-Stachurskiセルが水素の取り込みと検出を分離して、マルテンサイトマトリックス中の拡散係数を計算する方法を学びましょう。
Assb開発において、特殊なプレッシャーモールドまたは加圧電解セル(Pressurized Electrolytic Cells)の重要な機能は何ですか?
特殊なプレッシャーモールドとセルが、界面を維持し、デンドライトの成長を抑制することで、全固体電池を安定させる方法をご覧ください。
Iro2/Ato触媒のテストに回転円盤電極(Rde)システムが必要なのはなぜですか?正確なOerキネティックデータを取得する
RDEシステムが酸素気泡の干渉と物質移動の限界を排除し、IrO2/ATO触媒の真の固有活性を明らかにする方法を学びましょう。
補助電極として白金(Pt)シートを選択する理由とは?電気化学的試験における精度を実現
白金(Pt)シートが補助電極の標準とされる理由を学びましょう。化学的不活性と高い導電性により、正確なデータを提供します。
全固体電池試験におけるカスタマイズされた圧力試験セルの機能は何ですか? インターフェース接触の最適化
カスタマイズされた圧力試験セルが、固体-固体インターフェースを維持し、体積膨張を管理する方法を全固体電池研究で学びましょう。
Mecのアノード材料として黒鉛ブラシと炭素フェルトが選ばれる理由は何ですか?バイオ燃料のパフォーマンスを最適化する
MECアノードの業界標準である黒鉛ブラシと炭素フェルトが、バイオフィルム密度と電子伝達効率を最大化する理由をご覧ください。
Pecにおける3電極構成の技術的利点は何ですか?正確な触媒特性評価を実現する
3電極構成が作用電極の電位を分離し、分極を切り離し、正確なIPCEとCO2還元データを保証する方法を学びましょう。
実験室用ジャケット付き反応セルの主な機能は何ですか?電気触媒における熱制御をマスターする
ジャケット付き反応セルが精密な熱制御を提供し、廃水処理実験における環境変数を排除する方法を学びましょう。
可逆固体酸化物セル(Rsoc)の研究では、電気分解セルシステムはどのように利用されますか?エネルギーイノベーションを推進する
電気分解セルシステムが、エネルギー貯蔵のシミュレーション、サイクル効率のテスト、材料安定性の検証によってRSOCの研究をどのように可能にするかを学びましょう。
Mfcにはなぜ高純度のAg/Agcl参照電極が必要なのですか?微生物燃料電池の試験における精度を確保する
Ag/AgCl参照電極がハーフセル電位の分離と微生物燃料電池の性能診断に不可欠である理由を学びましょう。
Devanathan-Stachurskiデュアル電解セルのメカニズムとは?精密な水素透過試験を探る
Devanathan-Stachurskiセルが水素の発生と検出を分離し、材料の拡散とバリア効率を計算する方法を学びましょう。
硫化物固态電池における特殊な圧力装置の目的は何ですか? 化学機械的安定性を確保すること
連続的な外部圧力が界面の剥離を防ぎ、硫化物固態電池の化学機械的故障を緩和する方法を学びましょう。
Ferroceneベースのフロー電池の電気化学的試験は、なぜアルゴン雰囲気グローブボックス内で行う必要があるのですか?
正確なデータを取得するために、アルゴン雰囲気グローブボックスがFerrocene電池にとって、ポリマーの劣化や亜鉛の酸化を防ぐために不可欠である理由を学びましょう。
アニオン交換膜(Aem)またはPemの目的は何ですか? 電気化学的効率の向上
AEMおよびPEM膜が生成物の再酸化を防ぎ、電気化学フローセルで電荷バランスを維持する方法を理解する。
有機溶媒溶解におけるAg/Agcl参照電極の役割とは?貴金属の精密な安定性
Ag/AgCl参照電極が有機溶媒中の貴金属溶解に対して安定した電位をどのように提供し、かつ液絡電位を管理するかを学びましょう。
大規模な電解槽は、グリーン水素ベースのDriにとってなぜ重要なのでしょうか?鉄鋼生産の脱炭素化
大規模な電解槽が、産業CO2排出量を削減するために炭素を水素に置き換えることで、グリーン鉄鋼をどのように可能にするかをご覧ください。
白金電極は対極としてどのような役割を果たしますか?コーティング腐食研究におけるデータ整合性の確保
白金電極が電気化学セルにおける対極として、正確な腐食研究データを保証するための標準とされる理由を学びましょう。
SoecにおけるYszを固体電解質として使用する必要性とは?高効率水蒸気電解の鍵を解き明かす
YSZ(イットリア安定化ジルコニア)がSOECに不可欠である理由、850℃までの比類なきイオン伝導性と熱安定性について学びましょう。
白金(プラチナ)の電気化学的選択的溶解において、電解セルと電位制御システムはどのように機能しますか?
ポテンショスタットとサイクリックボルタンメトリーが、ナノ粒子を溶解するために精密な電圧サイクルを印加することで、白金の選択的回収を可能にする方法を学びましょう。
バッテリーテストモールドやコインセルケースはどのような役割を果たしますか?全固体電池の組み立てを今日最適化しましょう
全固体電池の研究において、バッテリーテストモールドとコインセルケースが界面インピーダンスを最小限に抑え、体積変化を管理する方法をご覧ください。
固体電池の電気化学的試験において、特殊な圧力モールドはどのように役立ちますか?専門家の見解
固体電池試験における接触維持、体積変化の管理、剥離防止に特殊な圧力モールドがどのように役立つかを学びましょう。
全固体電池(Assb)の試験において、カスタマイズされた圧力試験セルが必要なのはなぜですか?全固体電池の性能を極める
全固体電池(ASSB)の研究において、カスタマイズされた圧力セルが固体-固体界面を維持し、体積膨張を管理する方法を学びましょう。
2032型コインセル構成を使用することの重要性は何ですか?グラフェンの固有性能を分離します。
グラフェンの非生物学的試験において、固有の電気化学的特性を分離するために2032型コインセル構成が不可欠である理由を学びましょう。
3電極電解セルシステムを使用する利点は何ですか?精密なイオン液体分析
孤立した電位測定により、イオン液体の電気化学的ウィンドウを決定するために3電極システムが不可欠である理由を学びましょう。
Co2変換において、ゼロギャップMeaはどのような利点をもたらしますか?エネルギー効率と生成物収率を最大化する
ゼロギャップ膜電極アセンブリ(MEA)が、CO2変換におけるオーム損失を低減し、電流密度を向上させ、生成物のクロスオーバーを防ぐ方法をご覧ください。
Sofcの性能におけるEisを備えた電気化学ワークステーションの役割とは?精密診断を解き明かす
EIS搭載の電気化学ワークステーションがSOFCの抵抗をオーム抵抗、分極抵抗、拡散抵抗の成分に分解し、最適化する方法を学びましょう。
実験室用回転ディスク電極(Rde)は、銅ナノキューブの再構築評価をどのように容易にしますか?
RDEが質量移動限界を排除し、精密な電気化学的表面速度論とCVスキャンを通じて銅ナノキューブの再構築を分析する方法を学びましょう。
標準化された電気化学試験セルは、Mox/Cntf電極のスクリーニングにどのように役立ちますか?材料比率の最適化
標準化された電気化学試験セルが、CV、GCD、EISを介してMOx/CNTf電極の性能を評価し、効率的なスクリーニングを実現する方法をご覧ください。
フォースセンサー付きカスタムバッテリーテストモールドの利点は何ですか?圧力インピーダンス相関をマスターする。
全固体電池のEISを最適化するバッテリーモールドに統合されたフォースセンサーが、リアルタイムの圧力制御と監視を通じてどのように機能するかを発見してください。
ガラスライニング反応器の化学組成は何ですか?エンジニアリングされたエナメルの内部を見る
ガラスライニング反応器のエンジニアリングされたホウケイ酸エナメルの組成、SiO₂などの主要な酸化物、およびそれらが耐薬品性や熱安定性に果たす役割を発見してください。
化学反応器の利点とは何ですか?プロセスにおける精度、効率、安全性を解き放つ
化学反応器がどのように温度、圧力、反応時間を精密に制御し、工業プロセスにおける収率、効率、安全性を最大化するかをご覧ください。
電気化学合成システムはMof薄膜作製をどのように促進しますか?センサーのための精密工学
犠牲陽極と電解セルを使用した電気化学合成が、センサー用の高品質でひび割れのないMOF薄膜をどのように作成するかを学びましょう。
親水性炭素繊維紙は電極材料としてどのような役割を果たしますか?フロー電池の効率向上
親水性炭素繊維紙がフロー電池で二重の役割を果たす電極として、導電性と流体動力を最適化する方法をご覧ください。
In-Situラマン電気化学セルの電極クランプの材質はカスタマイズ可能ですか?研究に合わせてカスタマイズしましょう。
白金、銅、チタン、ガラス状炭素を含む、in-situラマン電気化学セルの電極クランプのカスタマイズオプションをご覧ください。
バッチ反応器の体積は一定ですか?体積、圧力、反応器設計の理解
バッチ反応器の体積が固定されている理由、そして圧力と密度が反応速度論と安全性にどのように影響を与えるかを学びましょう。
連続フロー電解槽の構造的および性能上の利点は何ですか? 水素製造効率の向上
マイクロ間隔設計、低い電気抵抗、高い電流密度により、連続フロー電解槽がバッチセルをどのように上回るかをご覧ください。
三元コバルト-モリブデン-ジルコニウム(Co-Mo-Zr)コーティングの電析システムにおいて、高純度コバルト板を陽極として使用する必要があるのはなぜですか?
イオンバランスを維持し、枯渇を防ぎ、コーティングの均一性を確保するために、高純度コバルトアノードがCo-Mo-Zrコーティングに不可欠である理由を学びましょう。
液体金属電気化学腐食セルにおける高強度ステンレス鋼るつぼの二重機能とは何ですか?
LBE合金の腐食試験において、ステンレス鋼るつぼが容器および対極の両方としてどのように機能するかをご覧ください。
特殊加圧電池テストセルダイの主な役割は何ですか?全固体電池のテストの最適化
特殊加圧電池テストセルダイが、固体間接触を維持し、固体電池の研究開発におけるインピーダンスを低減する方法をご覧ください。
イオン交換樹脂再生と電気化学的酸化システムを組み合わせることで、どのような技術的利点が得られますか?
IX樹脂再生と電気化学的酸化を組み合わせることで、持続可能なオンサイトPFAS分解ループがどのように構築されるかをご覧ください。
コーティング腐食試験における白金およびSceの機能とは? 3電極システムにおけるデータ精度の向上
正確な腐食分析のための3電極システムにおける補助電極としての白金と参照電極としてのSCEの役割を学びましょう。
C-Llzoの標準化された実験室用圧縮セルモールドはどのような利点をもたらしますか?バッテリーデータの精度を最適化する
標準化されたモールドが、信頼性の高い電気化学データを生成するために、機械的圧力と密閉環境を通じてc-LLZOのテストをどのように強化するかを発見してください。
前へ
Page 3
次へ