製品 ラボ用消耗品と材料 光学材料 波長400~700nm 反射防止・ARコーティングガラス
波長400~700nm 反射防止・ARコーティングガラス

光学材料

波長400~700nm 反射防止・ARコーティングガラス

商品番号 : KTOM-ARG

価格は以下に基づいて変動します 仕様とカスタマイズ


ラス素材
クリアガラス/ウルトラクリアガラス
軽い透明感
>98% (400-700nm)
ISO & CE icon

配送:

お問い合わせ 配送詳細を確認してください オンタイムディスパッチ保証.

反射防止・ARコートガラス

反射防止コーティング (AR コーティング) は、反射を低減するためにレンズや窓などの光学面に適用される薄膜または複数の材料層です。 AR コーティングの主な目的は、表面から反射される光の量を最小限に抑え、それによって材料を通過できる光の量を増やすことです。

AR コーティングは、適用される表面の屈折率を変化させることによって機能します。これらのコーティングを慎重に設計して堆積することにより、層の厚さと組成を最適化し、反射光波に対して相殺的な干渉を生み出すことができます。この干渉効果により反射光の強度が減少し、ぎらつきや不要な反射が大幅に減少します。

ディテール&パーツ

ARコートガラスの有無の違い
ARコートガラスの有無の違い
ARコートガラスの波長
ARコートガラスの波長

反射防止・ARコートガラスの用途

  • 眼鏡とサングラス: 度付き眼鏡とサングラスの AR コーティングは、まぶしさを軽減し、視覚的な鮮明さを向上させ、レンズの全体的な光学品質を向上させます。より多くの光がレンズを通過できるようにし、視覚の妨げとなる反射を軽減します。
  • カメラレンズ: カメラレンズの AR コーティングは、レンズフレア、ゴースト、不要な反射を最小限に抑え、より鮮明でシャープな画像を実現します。また、光の透過率も向上するため、写真家はより詳細に撮影できるようになり、全体的な画質が向上します。
  • ディスプレイ画面: コンピューターモニター、テレビ、スマートフォン、タブレットなどのディスプレイ画面上の AR コーティングは、ぎらつきを最小限に抑えて反射を軽減し、視認性を向上させます。これにより、特に明るい環境での視聴体験が向上し、画像の鮮明さと色の精度が向上します。
  • 光学機器: AR コーティングは、顕微鏡、望遠鏡、双眼鏡、カメラのレンズ フィルターなどのさまざまな光学機器に使用されています。反射を軽減し、光の透過率を高めるため、ユーザーは物体をより鮮明かつ詳細に観察できるようになります。

反射防止コーティングガラスの特性

  • 表面の反射や映り込みを最小限に抑えます。
  • 可視波長容量を最大化します。
  • 視覚的な歪みや曖昧な画像を防ぎます。
  • 最小限の光を吸収し、目に利益をもたらします。
  • 高い耐摩耗性と強力なコーティング密着性を実現します。

予防

  • 乾いたレンズに乾いた布を使用すると、傷がついたり、レンズのコーティングが損傷したりする可能性があります。反射防止コーティングは反射を軽減し、レンズの欠陥を隠すことができますが、AR コーティングされたレンズでは傷が目立ちやすくなります。
  • AR コーティングが施されたレンズは、傷がつかないように慎重に取り扱い、清掃して透明度を維持してください。

カスタマイズされたサービスを提供する

革新的で最先端の溶解プロセスの導入を通じて、当社は高品質のガラス製品の開発と製造における広範な専門知識を獲得し、幅広い光学製品を提供しています。 さまざまな商業、産業、科学用途向けのガラス製品。 同社は、光学ガラスの原ガラスから切断部品、完成品まで、さまざまな仕様を提供し、顧客と緊密に協力して、顧客のニーズに応じて製品をカスタマイズします。 品質に対する揺るぎない取り組みにより、当社はお客様の要件に合わせた完璧なソリューションを確実にお届けします。

さらにお見積りが必要な場合は、お問い合わせください。

FAQ

物理蒸着 (PVD) とは何ですか?

物理蒸着 (PVD) は、固体材料を真空中で蒸発させ、それを基板上に蒸着することによって薄膜を蒸着する技術です。 PVD コーティングは耐久性、耐傷性、耐食性に優れているため、太陽電池から半導体に至るまで、さまざまな用途に最適です。 PVD は、高温に耐えられる薄膜も作成します。ただし、PVD はコストが高くなる可能性があり、コストは使用する方法によって異なります。たとえば、蒸着は低コストの PVD 法ですが、イオン ビーム スパッタリングはかなり高価です。一方、マグネトロン スパッタリングは高価ですが、より拡張性があります。

一般的な AR コーティングの厚さはどれくらいですか?

この理想的な AR コーティングの全体の厚さは、通過帯域 (300 cm-1) の最長波長または最低周波数で 2 QWOT をわずかに超えます。

ARコーティングは内側ですか、それとも外側ですか?

A/R コーティングは通常、レンズの前面と背面の両方に塗布されます。ただし、サングラスでは、A/R コーティングはレンズの裏側にのみ適用され、背後からの反射や目からの鏡像を排除します。

反射防止コーティングの持続期間はどれくらいですか?

平均して、反射防止レンズ コーティングは約 2 年間持続しますが、適切なケアを行えば、AR コーティングはレンズの寿命の間持続します。

マグネトロンスパッタリングとは何ですか?

マグネトロン スパッタリングは、密着性に優れた非常に緻密な膜を生成するために使用されるプラズマ ベースのコーティング技術であり、融点が高く蒸発できない材料にコーティングを作成するための多用途の方法です。この方法では、ターゲットの表面近くに磁気的に閉じ込められたプラズマが生成され、そこで正に帯電した高エネルギーイオンが負に帯電したターゲット材料と衝突し、原子が放出または「スパッタリング」されます。これらの放出された原子は、基板またはウェーハ上に堆積され、目的のコーティングが作成されます。

薄膜を堆積するにはどのような方法が使用されますか?

薄膜の堆積に使用される主な方法は、化学蒸着 (CVD) と物理蒸着 (PVD) の 2 つです。 CVD では、反応ガスをチャンバーに導入し、そこでウェーハ表面で反応して固体膜を形成します。 PVD には化学反応は含まれません。代わりに、構成材料の蒸気がチャンバー内で生成され、ウェーハ表面で凝縮して固体膜を形成します。一般的な PVD の種類には、蒸着堆積とスパッタリング堆積が含まれます。蒸着技術には、熱蒸着、電子ビーム蒸着、誘導加熱の 3 種類があります。

なぜマグネトロンスパッタリングなのか?

マグネトロンスパッタリングは、蒸着法を超えて膜厚や膜密度の精度が高いため、好まれています。この技術は、特定の光学的または電気的特性を持つ金属または絶縁コーティングを作成するのに特に適しています。さらに、マグネトロン スパッタリング システムは複数のマグネトロン ソースを使用して構成できます。

薄膜形成装置とは何ですか?

薄膜堆積装置とは、基板材料上に薄膜コーティングを作成および堆積するために使用されるツールおよび方法を指します。これらのコーティングはさまざまな材料で作ることができ、基材の性能を向上または変更できるさまざまな特性を備えています。物理蒸着 (PVD) は、固体材料を真空中で蒸発させ、それを基板上に蒸着する一般的な技術です。他の方法としては、蒸着やスパッタリングなどがあります。薄膜蒸着装置は、光電子デバイス、医療用インプラント、精密光学機器などの製造に使用されます。

薄膜形成に使用される材料は何ですか?

薄膜堆積では、一般的に金属、酸化物、化合物を材料として利用しますが、それぞれに独自の長所と短所があります。金属は耐久性と堆積の容易さの点で好まれますが、比較的高価です。酸化物は耐久性が高く、高温に耐え、低温でも堆積させることができますが、脆くて加工が難しい場合があります。化合物は強度と耐久性を備え、低温で堆積でき、特定の特性を示すように調整できます。

薄膜コーティングの材料の選択は、用途の要件によって異なります。金属は熱と電気の伝導に理想的ですが、酸化物は保護を提供するのに効果的です。化合物は特定のニーズに合わせて調整できます。最終的に、特定のプロジェクトに最適な素材は、アプリケーションの特定のニーズによって異なります。

薄膜形成技術とは何ですか?

薄膜堆積技術は、厚さが数ナノメートルから 100 マイクロメートルの範囲の非常に薄い材料膜を基板表面または以前に堆積したコーティング上に塗布するプロセスです。この技術は、半導体、光学デバイス、ソーラーパネル、CD、ディスクドライブなどの最新のエレクトロニクスの製造に使用されています。薄膜堆積の 2 つの大きなカテゴリは、化学変化によって化学的に堆積されたコーティングが生成される化学堆積と、材料がソースから放出され、機械的、電気機械的、または熱力学的プロセスを使用して基板上に堆積される物理蒸着です。

最適な薄膜成膜を実現するにはどのような方法がありますか?

望ましい特性を備えた薄膜を実現するには、高品質のスパッタリングターゲットと蒸着材料が不可欠です。これらの材料の品質は、純度、粒子サイズ、表面状態などのさまざまな要因によって影響されます。

不純物は得られる薄膜に欠陥を引き起こす可能性があるため、スパッタリングターゲットまたは蒸着材料の純度は重要な役割を果たします。粒子サイズも薄膜の品質に影響を与え、粒子が大きくなると膜の特性が低下します。さらに、表面が粗いとフィルムに欠陥が生じる可能性があるため、表面状態も非常に重要です。

最高品質のスパッタリングターゲットと蒸着材料を得るには、高純度、小さな粒径、滑らかな表面を備えた材料を選択することが重要です。

薄膜蒸着の用途

酸化亜鉛系薄膜

ZnO 薄膜は、熱、光学、磁気、電気などのさまざまな産業で応用されていますが、主な用途はコーティングと半導体デバイスです。

薄膜抵抗器

薄膜抵抗器は現代のテクノロジーにとって極めて重要であり、ラジオ受信機、回路基板、コンピューター、高周波デバイス、モニター、ワイヤレス ルーター、Bluetooth モジュール、および携帯電話受信機で使用されています。

磁性薄膜

磁性薄膜は、エレクトロニクス、データストレージ、無線周波数識別、マイクロ波装置、ディスプレイ、回路基板、オプトエレクトロニクスの主要コンポーネントとして使用されています。

光学薄膜

光学コーティングとオプトエレクトロニクスは、光学薄膜の標準的な用途です。分子線エピタキシーでは、光電子薄膜デバイス (半導体) を製造できます。この場合、エピタキシャル膜は一度に 1 原子ずつ基板上に堆積されます。

高分子薄膜

ポリマー薄膜は、メモリチップ、太陽電池、電子デバイスに使用されます。化学蒸着技術 (CVD) により、適合性やコーティングの厚さを含むポリマー フィルム コーティングを正確に制御できます。

薄膜電池

薄膜電池は埋め込み型医療機器などの電子機器に電力を供給しており、リチウムイオン電池は薄膜の使用により大幅に進歩しました。

薄膜コーティング

薄膜コーティングは、さまざまな産業や技術分野におけるターゲット材料の化学的および機械的特性を強化します。一般的な例としては、反射防止コーティング、紫外線防止または赤外線防止コーティング、傷防止コーティング、レンズの偏光などが挙げられます。

薄膜太陽電池

薄膜太陽電池は太陽エネルギー産業にとって不可欠であり、比較的安価でクリーンな電力の生産を可能にします。太陽光発電システムと熱エネルギーは、適用可能な 2 つの主要な技術です。

薄膜の堆積に影響を与える要因とパラメータ

堆積速度:

フィルムの製造速度(通常は厚さを時間で割った値で測定されます)は、用途に適した技術を選択するために重要です。薄膜には中程度の堆積速度で十分ですが、厚い膜には速い堆積速度が必要です。速度と正確な膜厚制御のバランスをとることが重要です。

均一:

基板全体にわたるフィルムの一貫性は均一性として知られており、通常はフィルムの厚さを指しますが、屈折率などの他の特性にも関係する場合があります。均一性の過小または過大な仕様を避けるために、アプリケーションをよく理解することが重要です。

充填能力:

充填能力またはステップカバレージは、堆積プロセスが基板のトポグラフィーをどの程度うまくカバーするかを指します。使用される堆積方法 (CVD、PVD、IBD、または ALD など) は、ステップ カバレッジと充填に大きな影響を与えます。

フィルムの特徴:

フィルムの特性は、フォトニック、光学、電子、機械、または化学に分類できるアプリケーションの要件によって異なります。ほとんどの映画は、複数のカテゴリの要件を満たす必要があります。

プロセス温度:

フィルムの特性はプロセス温度に大きく影響され、アプリケーションによって制限される場合があります。

ダメージ:

各堆積技術には、堆積される材料に損傷を与える可能性があり、フィーチャが小さいほどプロセス損傷を受けやすくなります。潜在的な損傷源には、汚染、紫外線、イオン衝撃などがあります。材料とツールの限界を理解することが重要です。

この製品に関するよくある質問をもっと見る

4.8

out of

5

The AR coating glass is a game-changer for my lab. It has significantly reduced glare and reflections, resulting in clearer images and more accurate results.

Gerrard G.

4.7

out of

5

The quality of this AR coating glass is exceptional. It's durable and has held up well in our lab's demanding environment.

Amina K.

4.9

out of

5

The speedy delivery of the AR coating glass was a lifesaver. It arrived just in time for a crucial experiment, and the results were outstanding.

Renaud B.

4.6

out of

5

I'm thoroughly impressed with the value for money I got with this AR coating glass. It's a cost-effective solution that has greatly improved the efficiency of our optical experiments.

Isabella C.

4.8

out of

5

The technological advancement of this AR coating glass is remarkable. It has opened up new possibilities for our research and has pushed the boundaries of what we can achieve in the lab.

Federico O.

4.7

out of

5

The durability of the AR coating glass is exceptional. It has withstood rigorous use in our lab and continues to perform flawlessly, delivering consistent and reliable results.

Emma S.

4.9

out of

5

The clarity and sharpness of images obtained using this AR coating glass are truly impressive. It has revolutionized the way we conduct experiments and has led to groundbreaking discoveries.

Samuel P.

4.6

out of

5

The versatility of this AR coating glass is commendable. It has proven to be adaptable to various applications in our lab, enhancing the performance of different optical instruments.

Olivia H.

4.8

out of

5

The AR coating glass has exceeded our expectations. It has minimized reflections and improved the overall quality of our optical data, leading to more accurate and reliable results.

Alexander N.

4.7

out of

5

The customer service provided by the company was exceptional. They were responsive, knowledgeable, and went above and beyond to ensure a smooth and hassle-free experience.

Sophia G.

PDF - 波長400~700nm 反射防止・ARコーティングガラス

ダウンロード

のカタログ 光学材料

ダウンロード

のカタログ 薄膜蒸着材料

ダウンロード

のカタログ 薄膜形成装置

ダウンロード

引用を要求

弊社の専門チームが 1 営業日以内にご返信いたします。 お気軽にお問い合わせ下さい!

関連製品

実験室用光学超透明ガラスシート K9 / B270 / BK7

実験室用光学超透明ガラスシート K9 / B270 / BK7

光学ガラスは、他の種類のガラスと多くの特性を共有していますが、光学用途にとって重要な特性を強化する特定の化学物質を使用して製造されます。

耐高温光学石英ガラスシート

耐高温光学石英ガラスシート

電気通信、天文学、その他の分野で正確な光を操作するための光学ガラス シートの力を発見してください。卓越した透明度とカスタマイズされた屈折特性により、光学技術の進歩を解き放ちます。

赤外線透過コーティングサファイアシート/サファイア基板/サファイアウィンドウ

赤外線透過コーティングサファイアシート/サファイア基板/サファイアウィンドウ

サファイアから作られた基板は、比類のない化学的、光学的、物理的特性を誇ります。熱衝撃、高温、砂の浸食、水に対する優れた耐性が際立っています。

光学窓

光学窓

ダイヤモンド光学ウィンドウ: 優れた広帯域赤外線透過性、優れた熱伝導性、赤外線散乱の低さ、高出力 IR レーザーおよびマイクロ波ウィンドウ用途向け。

赤外線シリコン/高抵抗シリコン/単結晶シリコンレンズ

赤外線シリコン/高抵抗シリコン/単結晶シリコンレンズ

シリコン (Si) は、約 1 μm ~ 6 μm の近赤外 (NIR) 範囲での用途に最も耐久性のある鉱物材料および光学材料の 1 つとして広く知られています。

無アルカリ・ホウアルミノケイ酸ガラス

無アルカリ・ホウアルミノケイ酸ガラス

ボロアルミノケイ酸ガラスは熱膨張に対する耐性が高いため、実験用ガラス器具や調理器具など、温度変化への耐性が必要な用途に適しています。

赤外線サーマルイメージング/赤外線温度測定両面コートゲルマニウム(Ge)レンズ

赤外線サーマルイメージング/赤外線温度測定両面コートゲルマニウム(Ge)レンズ

ゲルマニウム レンズは、過酷な環境や風雨にさらされる用途に適した耐久性と耐腐食性の光学レンズです。

CVDダイヤモンドコーティング

CVDダイヤモンドコーティング

CVD ダイヤモンドコーティング: 切削工具、摩擦、音響用途向けの優れた熱伝導性、結晶品質、接着力

MgF2フッ化マグネシウム結晶基板/窓/塩板

MgF2フッ化マグネシウム結晶基板/窓/塩板

フッ化マグネシウム (MgF2) は異方性を示す正方晶系結晶であるため、高精度のイメージングや信号伝送を行う場合には単結晶として扱うことが不可欠です。

片面・両面コートガラスシート/K9石英シート

片面・両面コートガラスシート/K9石英シート

K9 ガラスは、K9 クリスタルとしても知られ、その優れた光学特性で知られる光学用ホウケイ酸クラウン ガラスの一種です。

ロングパス/ハイパスフィルター

ロングパス/ハイパスフィルター

ロングパスフィルターは、カットオフ波長より長い光を透過し、カットオフ波長より短い光を吸収または反射によって遮断するために使用されます。

CaF2基板/ウィンドウ/レンズ

CaF2基板/ウィンドウ/レンズ

CaF2 ウィンドウは、結晶性フッ化カルシウムで作られた光学ウィンドウです。これらのウィンドウは多用途で、環境的に安定しており、レーザー損傷に対して耐性があり、200 nm から約 7 μm までの高い安定した透過率を示します。

電子ビーム蒸着コーティング無酸素銅るつぼ

電子ビーム蒸着コーティング無酸素銅るつぼ

電子ビーム蒸着技術を使用する場合、無酸素銅るつぼを使用すると、蒸着プロセス中の酸素汚染のリスクが最小限に抑えられます。

光学石英板 JGS1 / JGS2 / JGS3

光学石英板 JGS1 / JGS2 / JGS3

石英板は透明で耐久性があり、さまざまな業界で広く使用されている多用途部品です。高純度水晶を使用しており、耐熱性、耐薬品性に優れています。

電極研磨材

電極研磨材

電気化学実験用に電極を研磨する方法をお探しですか?当社の研磨材が役に立ちます。最良の結果を得るには、簡単な手順に従ってください。

ショートパス/ショートパスフィルター

ショートパス/ショートパスフィルター

ショートパス フィルターは、カットオフ波長よりも短い波長の光を透過させ、より長い波長を遮断するように特別に設計されています。

PTFE導電性ガラス基板洗浄ラック

PTFE導電性ガラス基板洗浄ラック

PTFE 導電性ガラス基板洗浄ラックは、洗浄プロセス中の効率的で汚染のない取り扱いを保証するために、正方形の太陽電池シリコン ウェーハのキャリアとして使用されます。

硫化亜鉛(ZnS)ウィンドウ/ソルトシート

硫化亜鉛(ZnS)ウィンドウ/ソルトシート

光学硫化亜鉛 (ZnS) ウィンドウは、8 ~ 14 ミクロンの優れた IR 透過範囲を備えています。過酷な環境に対する優れた機械的強度と化学的不活性性 (ZnSe ウィンドウよりも硬い)

セレン化亜鉛(ZnSe)ウィンドウ/基板/光学レンズ

セレン化亜鉛(ZnSe)ウィンドウ/基板/光学レンズ

セレン化亜鉛は、亜鉛蒸気と H2Se ガスを合成することによって形成され、グラファイト サセプター上にシート状の堆積物が形成されます。

関連記事

光学水晶板のパワーを解き放つ:用途と利点

光学水晶板のパワーを解き放つ:用途と利点

光学石英プレートの世界に入り込み、その卓越した特性、光学、エレクトロニクスなどの産業における多様な用途を探求してください。低熱膨張、高温耐性、正確な光学的透明度など、その利点をご覧ください。

詳細を見る
光学石英板の優れた特性と用途を解き明かす

光学石英板の優れた特性と用途を解き明かす

優れた紫外線透過率、熱安定性、レンズ、照明器具、半導体製造への使用など、光学石英プレートの驚くべき特性と多様な用途をご覧ください。

詳細を見る
研究室の安全装置 - 目の保護

研究室の安全装置 - 目の保護

細胞培養実験室を含むウェットベンチ実験室に入る前に、安全メガネまたは化学ゴーグルを着用する必要があります。これは、スタッフや学生だけでなく、研究室の訪問者、GT メンテナンスおよび保管員にも適用されます。

詳細を見る
建築用ガラスへの真空コーティングの応用

建築用ガラスへの真空コーティングの応用

建築用ガラスへの真空コーティングの方法と利点について、エネルギー効率、美観、耐久性に焦点を当てながら詳しく紹介。

詳細を見る
薄膜システム設計:原理、考察、実用的アプリケーション

薄膜システム設計:原理、考察、実用的アプリケーション

薄膜システムの設計原理、技術的考察、様々な分野での実用的応用を徹底的に探求する。

詳細を見る
チューブラーPECVDコーティングの一般的なリワークの原因と解決策

チューブラーPECVDコーティングの一般的なリワークの原因と解決策

この記事では、結晶シリコン太陽電池のPECVDコーティングにおける一般的な手戻りの原因について説明し、品質向上とコスト削減のための実現可能な解決策を提示する。

詳細を見る
電子デバイスにおけるPECVDナノコーティング技術の応用

電子デバイスにおけるPECVDナノコーティング技術の応用

PECVDナノコーティング技術は、様々な電子デバイスの耐久性と信頼性を向上させます。

詳細を見る
結晶シリコン太陽電池におけるPECVDコーティングの一般的な異常原因と解決策

結晶シリコン太陽電池におけるPECVDコーティングの一般的な異常原因と解決策

太陽電池におけるPECVDコーティングの一般的な問題を分析し、品質向上とコスト削減のためのソリューションを提供。

詳細を見る
化学気相成長(CVD)薄膜形成技術

化学気相成長(CVD)薄膜形成技術

CVD技術の概要、原理、種類、用途、プロセス特性、利点。

詳細を見る
酸化ケイ素蒸着膜の色調制御と応用

酸化ケイ素蒸着膜の色調制御と応用

酸化シリコン薄膜のカラーバリエーション、制御方法、実用化を探る。

詳細を見る
PECVDナノコーティングの防水・防食以外の用途

PECVDナノコーティングの防水・防食以外の用途

防水膜、防錆膜、抗菌膜、親水膜、耐摩耗膜など、多様なPECVDナノコーティングの応用例を紹介。

詳細を見る
マグネトロンスパッタリング成膜における膜厚公差の制御

マグネトロンスパッタリング成膜における膜厚公差の制御

最適な材料性能を得るためのマグネトロンスパッタリングコーティングにおける膜厚公差を確保する方法について説明する。

詳細を見る