あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
サイドウィンドウ光学電解電気化学セル
マイクロ電気化学セルの主な利点は何ですか?最小限の試薬で研究を最大化する
マイクロ電気化学セルが、希少または高価な試薬をわずか200マイクロリットル使用して、精密な腐食研究を可能にする方法をご覧ください。
EpdにPtfe製デポジションタンクを使用する利点は何ですか?ステンレス鋼への比類なきコーティング精度を実現
PTFEタンクが、優れた絶縁性、化学的不活性、最適化された電流分布を通じて、電着プロセスをどのように強化するかをご覧ください。
Niti合金試験における高精度電気化学セルの主な役割は何ですか?生体適合性と安全性を確保する
高精度電気化学セルが生体環境をどのようにシミュレートし、多孔質NiTi合金の耐食性を評価するかを学びましょう。
3D構造へのPbo2電析に電気化学フローリアクターが必要なのはなぜですか?物質移動の問題を解決する
イオン枯渇と拡散限界を克服することで、PbO2を3D基板に析出させる際にフローリアクターが静置セルよりも優れている理由を学びましょう。
特殊な電解セルはどのようにして濃度を高めるのですか?同位体濃縮によるトリチウム検出の向上
電解セルが同位体分離を利用してトリチウムを10~15倍に濃縮し、高精度な液体シンチレーション計数分析を可能にする方法を学びましょう。
3電極電解セルを使用して測定されるパフォーマンス指標は何ですか?Kintekで光触媒を評価する
タンタル酸フッ化物光触媒を評価するために、3電極システムを使用して光電流密度、ABPE、IPCEを測定する方法を学びましょう。
トリチウム濃縮のための精密電解槽に求められる重要な設計要件は何ですか?
トリチウム分析のための、定電流制御やULT冷却を含む、精密電解槽に不可欠な設計要件を学びましょう。
研磨されたガラス状炭素ディスクが作用電極基板として使用されるのはなぜですか?電気化学エッチングにおける精度を確保する
ガラス状炭素の化学的不活性、高い導電性、滑らかな表面が、電気化学実験の理想的な基板となる理由を学びましょう。
腐食性および放射性媒体用の電気化学セル設計において、液絡ブリッジとガラスフィルターはどのように機能しますか?
液体接合ブリッジとガラスフィルターが、腐食性および放射性の媒体中で参照電極を保護し、安定した電気化学データを取得する方法を学びましょう。
電解セルとその支持電極システムは、酸化チタンナノチューブアレイの性能にどのように影響しますか?
電解セルの安定性と電極の精度が、TiO2ナノチューブアレイの成長、配向、効率をどのように制御するかを学びましょう。
アクチノイド研究におけるPtfe製電気化学セルの利点は何ですか?正確な腐食データを確認する
PTFE製電気化学セルがアクチノイド研究に不可欠である理由を発見してください。比類のない耐薬品性と電気絶縁性を提供します。
アクリル酸廃水の処理に石英電解セルが使用されるのはなぜですか?化学的安定性とデータの整合性を確保する
石英電解セルが、その耐食性と化学的安定性からアクリル酸廃水の分解に不可欠である理由を学びましょう。
ウォールジェットアンペロメトリーセルが検出ユニットとして使用されるのはなぜですか?高感度リアルタイムモニタリングの説明
ウォールジェットアンペロメトリーセルが、動的な濃度検出のための迅速な応答時間と優れた物質移動により、オンラインモニタリングをどのように強化するかをご覧ください。
Eco2Rrにはなぜカスタム電気化学フローセルが使用されるのか?工業グレードの性能と電流密度を実現
フローセルがH型セルよりもeCO2RRで優れている理由を、物質移動限界を克服して400 mA cm⁻²の電流密度を達成する方法を学びましょう。
アクリル(Pmma)が電解セルに一般的に選ばれるのはなぜですか?電気化学設計における明確な利点
アクリルが電解セルの最良の選択肢である理由を学びましょう。電気絶縁性と光学透明性の完璧な組み合わせを提供します。
標準的な3電極電気化学セルにおける各コンポーネントは、Hea試験中にどのように機能しますか?
3電極セルにおける作用電極、参照電極、対極の機能を知り、正確なHEA電気化学データを取得する方法を学びましょう。
白金改質炭素フェルトカソードの作用機序とは?自己持続型バイオエンリッチメントの実現
白金改質炭素フェルトカソードがどのように酸素還元を触媒し、微生物エンリッチメントのための自己持続型電気化学システムを駆動するかをご覧ください。
参照電極の機能とは? 3電極リアクター再構築における精密制御
参照電極が作用電極の電位を分離し、干渉を除去し、電気化学リアクターの精度を確保する方法を学びましょう。
可逆固体酸化物セル(Rsoc)の研究では、電気分解セルシステムはどのように利用されますか?エネルギーイノベーションを推進する
電気分解セルシステムが、エネルギー貯蔵のシミュレーション、サイクル効率のテスト、材料安定性の検証によってRSOCの研究をどのように可能にするかを学びましょう。
3電極システムはどのような機能を持っていますか?Cpセンサーの精密な膜成長をマスターする
導電性ポリマーセンサー膜の厚さ、形態、ドーピングを制御して優れた性能を実現する方法を学びましょう。
Rvc電極の洗浄・取り扱い時に必要な物理的保護対策は何ですか?カーボンラティスを保護する
RVC電極の必須保護対策を学びましょう。RVCの多孔性を維持するために、非接触洗浄と丁寧な取り扱いがなぜ不可欠なのかを発見してください。
310Hステンレス鋼用電解エッチングシステムの目的は何ですか?精密な微細構造の詳細を明らかにする
10%シュウ酸を用いた電解エッチングが、310Hステンレス鋼のオーステナイト粒、炭化物析出物、結晶粒界をどのように明らかにするかを学びましょう。
炭素鋼に専用の電気化学試験セルが必要なのはなぜですか?地熱腐食データを正確に保証する
地熱環境における炭素鋼の評価に専用試験セルが不可欠な理由、嫌気性制御と固定電極形状の確保について学びましょう。
フッ化物イオン電池の試験に定温オーブンを使用するのはなぜですか?EisおよびCvデータの精度を確保する
熱安定性がフッ化物イオン電池の研究に不可欠である理由を発見し、正確なイオン輸送と反応速度の測定を保証します。
白金コーティングされたステンレス鋼電極の機能は何ですか?触媒安定性とHer性能の向上
白金コーティングされた電極が、フローセル内で水素発生と触媒再生をどのように促進し、耐酸性耐久性を提供するかをご覧ください。
黒鉛剥離における電解セルの主要機能は何ですか? エンジニアリンググラフェン製造
電解セルと電極システムがイオンインターカレーションをどのように促進し、調整可能な材料特性を持つ高品質グラフェンを製造するかを学びましょう。
マイクロ流体Eセルに必要な電極構成は? 精密微小スケール腐食研究
マイクロリットル量での精密な腐食分析のために、白金線を使用したマイクロ流体Eセルに不可欠な3電極システムについて学びましょう。
Mecモニタリングにおける飽和カロメル電極(Sce)の役割は?解毒のためのキネティクス最適化
SCEが微生物電解セル(MEC)で安定した基準として機能し、半電位を分離し、反応速度論を最適化する方法を学びましょう。
二相ステンレス鋼の腐食試験における電極の役割は何ですか?正確な材料分析を保証する
鋼の正確な腐食試験のための三電極システムにおける作用電極、対極、参照電極の具体的な役割を学びましょう。
Tisicnコーティングの評価において、飽和Ag/Agcl電極はどのような役割を果たしますか?測定精度の確保
飽和Ag/AgCl電極が、TiSiCNコーティングの安定性と耐食性を評価するために不可欠な安定電位をどのように提供するかを学びましょう。
マンガン電析において、恒温三電極電気化学セルシステムが利用されるのはなぜですか?
マンガン電析における精度、速度論、形態形成において、熱安定性と三電極システムが重要である理由をご覧ください。
トリチウム濃縮における電解槽の機能は何ですか? 水質分析における検出限界の向上
専門的な電解槽が、正確な環境水質分析と検出のためにトリチウム濃度を10〜15倍に濃縮する方法をご覧ください。
3電極電解セルシステムにおける高純度白金対極の役割は何ですか? Pdla/Ato触媒の正確なテストを実現する
電解セルでのPdLa/ATO触媒テストにおいて、高純度白金電極がデータの一貫性と安定した電流ループをどのように保証するかをご覧ください。
カスタムテフロン電気化学セルの設計上の利点は何ですか?トライボ腐食における精度
カスタムテフロンセルが、化学的不活性、漏れのない摩擦試験、トライボ腐食実験のための最適化されたスペースをどのように確保するかをご覧ください。
鉛精鉱浸出におけるMsa効率を隔膜電解槽はどのように向上させるか?化学ループの最適化
隔膜電解槽が、反応の分離、エネルギー浪費の防止、溶媒再生の確保によって鉛精鉱浸出を強化する方法を学びましょう。
分光反応セルにおけるフラット光学窓の役割とは?高速ガス交換のための精密設計
従来の半球ドームと比較して、フラット光学窓が分光セルでデッドボリュームを削減し、時間分解能を向上させる方法をご覧ください。
What Role Do Molten Salt Electrolyzers Play In Ammonia Synthesis? Powering The Lithium-Mediated Cycle
Learn how molten salt electrolyzers drive the lithium-mediated ammonia cycle by reducing lithium ions into reactive metal for nitrogen fixation.
特殊な電解採取セルはどのような主な機能を果たしますか?金の回収率と純度を最適化する
特殊な電解採取セルが、電気化学的還元と流量の最適化を通じて、チオ尿素溶液から高純度の金を回収する方法を学びましょう。
二重ループ電気化学ポテンシオキネティック再活性化(Dl-Epr)試験において、スーパー二相ステンレス鋼の測定精度は電気化学セルシステムによってどのように確保されますか?
ステンレス鋼の電極安定性と脱酸素化により、DL-EPR試験における電気化学セルシステムがどのように精度を達成するかを学びましょう。
標準化された電気化学試験セルは、Mox/Cntf電極のスクリーニングにどのように役立ちますか?材料比率の最適化
標準化された電気化学試験セルが、CV、GCD、EISを介してMOx/CNTf電極の性能を評価し、効率的なスクリーニングを実現する方法をご覧ください。
What Are The Functions Of A Saturated Calomel Electrode And A Salt Bridge In Acidic Corrosion Inhibition Experiments?
Understand how the SCE and salt bridge ensure voltage stability and protect equipment in acidic corrosion inhibition experiments.
Mfcにはなぜ高純度のAg/Agcl参照電極が必要なのですか?微生物燃料電池の試験における精度を確保する
Ag/AgCl参照電極がハーフセル電位の分離と微生物燃料電池の性能診断に不可欠である理由を学びましょう。
なぜイオン交換膜を備えた電解セルが必要なのですか?安全性と効率の向上
水の電気分解にイオン交換膜が不可欠な理由を学びましょう。爆発性ガスの混合を防ぎ、過電圧を低減して効率を高めます。
In-Situ Raman電気化学セルで一般的に使用される電極の種類は何ですか?分光セットアップを最適化する
Ag/AgCl基準を備えた白金作用極および対極を特徴とする、in-situ Ramanセル用の標準的な3電極システムについて学びましょう。
In-Situ圧力監視デバイスを使用する目的は何ですか?Ssbにおける応力と「呼吸効果」を明らかにします
in-situ圧力監視が「呼吸効果」と固体電池の応力変化をどのように追跡し、材料の耐久性を最適化するかを発見してください。
ナトリウムイオン電池電解質の評価にCr2032コインセルケースを使用する利点は何ですか?
CR2032ケースがナトリウムイオン電解質試験のゴールドスタンダードである理由を発見してください。気密シールと正確なデータ整合性を提供します。
電解セルにおけるエージングプロセスの技術的な意義は何ですか?ナノチューブ構造を精密化する
ゼロ電圧エージングプロセスが、化学的溶解を用いて接続されたナノポアを独立した高精度ナノチューブに変換する方法を学びましょう。
マンガン電解槽に不織布層が必要な理由は何ですか?高純度金属の生産を保証する
不織布隔膜がpH安定性、加水分解の防止、マンガンセルでの電流効率の最大化に不可欠である理由を学びましょう。
電解セルと電気化学ワークステーションは、Pt/Pd燃料電池の評価にどのように使用されますか?専門家ガイド
電流-電圧、抵抗、サイクル安定性を含むPt/Pd合金の性能を測定する電解セルとワークステーションについて学びましょう。
コーティング腐食試験における白金およびSceの機能とは? 3電極システムにおけるデータ精度の向上
正確な腐食分析のための3電極システムにおける補助電極としての白金と参照電極としてのSCEの役割を学びましょう。
アニオン交換膜(Aem)またはPemの目的は何ですか? 電気化学的効率の向上
AEMおよびPEM膜が生成物の再酸化を防ぎ、電気化学フローセルで電荷バランスを維持する方法を理解する。
ゼロギャップCo2還元におけるイオン交換膜の役割とは?選択的輸送のエンジンをマスターする
CO2還元電解槽におけるファラデー効率を最大化するために、イオン交換膜が固体電解質および選択的ゲートキーパーとしてどのように機能するかを学びましょう。
白金(Pt)線作为对电极的优点是什么?确保高精度电化学
了解为什么铂金线是铂金线作为对电极的黄金标准,它具有化学惰性、高导电性和数据完整性。
3電極式電気化学腐食セルの役割とは?クロムめっきの耐久性を検証する
3電極システムとポテンショダイナミック分極試験により、めっきのピッティング電位と防食性能を定量化する方法を学びましょう。
Soecにおけるセラミック電解質(Ysz)使用の利点は何ですか?高効率Co2還元を実現
YSZのようなセラミック電解質が、電気的エネルギー消費を削減し、変換効率を高めるために高温SOEC運転を可能にする方法をご覧ください。
Nvpf試験において、Swagelokタイプセルモールドはどのような課題に対応しますか?精密な圧力とシーリングで精度を向上
Swagelokタイプセルモールドが、信頼性の高いNVPF電気化学試験を保証するために、接触抵抗と電解液漏洩の問題をどのように解決するかをご覧ください。
3電極構成の電気化学セルは、どのようにして904Lステンレス鋼の腐食測定の精度を保証するのでしょうか?
3電極セルで電位と電流を分離することで、904Lステンレス鋼インターフェースの正確な腐食データが得られる仕組みを学びましょう。
ゼロギャップ電解セルにおいて、Pps製織布セパレーターに要求される特定の機械的・物理的特性は何ですか?
ゼロギャップ電解セルにおけるPPSセパレーターにとって、圧縮強度、寸法安定性、表面適合性がなぜ不可欠なのかを学びましょう。
SoecにおけるYszを固体電解質として使用する必要性とは?高効率水蒸気電解の鍵を解き明かす
YSZ(イットリア安定化ジルコニア)がSOECに不可欠である理由、850℃までの比類なきイオン伝導性と熱安定性について学びましょう。
ステンレス鋼管を陰極として使用する技術的な利点は何ですか?電気化学リアクターの設計を最適化する
ステンレス鋼管がリアクターシェルと陰極の両方として機能し、設計を簡素化し、腐食を防ぎ、安定した電流を確保する方法を学びましょう。
放射性セル試験に銀/塩化銀(Ag/Agcl)電極が使用されるのはなぜですか?安定性と精度を確保する
Ag/AgCl参照電極が放射性電解セル試験に不可欠である理由を発見してください。アルカリ性媒体で比類のない安定性を提供します。
Pecにおける3電極構成の技術的利点は何ですか?正確な触媒特性評価を実現する
3電極構成が作用電極の電位を分離し、分極を切り離し、正確なIPCEとCO2還元データを保証する方法を学びましょう。
三電極電気化学試験システムにおいて、白金(Pt)シートが対極として使用されるのはなぜですか?
カウンター電極のゴールドスタンダードとして、化学的不活性と優れた導電性を提供する白金シートが選ばれる理由をご覧ください。
白金(プラチナ)の電気化学的選択的溶解において、電解セルと電位制御システムはどのように機能しますか?
ポテンショスタットとサイクリックボルタンメトリーが、ナノ粒子を溶解するために精密な電圧サイクルを印加することで、白金の選択的回収を可能にする方法を学びましょう。
大規模な電解槽は、グリーン水素ベースのDriにとってなぜ重要なのでしょうか?鉄鋼生産の脱炭素化
大規模な電解槽が、産業CO2排出量を削減するために炭素を水素に置き換えることで、グリーン鉄鋼をどのように可能にするかをご覧ください。
Mecのアノード材料として黒鉛ブラシと炭素フェルトが選ばれる理由は何ですか?バイオ燃料のパフォーマンスを最適化する
MECアノードの業界標準である黒鉛ブラシと炭素フェルトが、バイオフィルム密度と電子伝達効率を最大化する理由をご覧ください。
三電極セルでフリットガラス管を使用する目的は何ですか?バナジウムレドックス試験の精度向上
フリットガラス管が電極を分離し、相互汚染を防ぎ、正確なバナジウムレドックスカップルの電気化学測定を保証する方法を学びましょう。
In-Situラマン電気化学セルの電極クランプの材質はカスタマイズ可能ですか?研究に合わせてカスタマイズしましょう。
白金、銅、チタン、ガラス状炭素を含む、in-situラマン電気化学セルの電極クランプのカスタマイズオプションをご覧ください。
イオン交換膜はH2O2の分解をどのように防ぐのか?フローセルにおける収率と効率の向上
PEM膜とAEM膜が、フローセルリアクターにおける過酸化水素の移動と酸化的分解を防ぐ物理的バリアとしてどのように機能するかを学びましょう。
Devanathan-Stachurskiデュアル電解セルのメカニズムとは?精密な水素透過試験を探る
Devanathan-Stachurskiセルが水素の発生と検出を分離し、材料の拡散とバリア効率を計算する方法を学びましょう。
H2O2燃料電池研究におけるグラファイトを用いた三電極システムの利点は何ですか?データ精度を確保する
三電極グラファイトシステムがiR降下と金属汚染を排除し、燃料電池触媒の正確な特性評価を可能にする方法をご覧ください。
Swagelokタイプセルモールドは、バッテリーテストにおいてどのような機能を持っていますか?インターフェース圧とデータ精度を最適化する
Swagelokタイプセルモールドが、インターフェース圧を最適化し、反応性材料を隔離することで、バッテリー研究におけるデータ精度をどのように確保するかをご覧ください。
シリカ添加ポリエチレン膜セパレーターを使用する必要性は?モリブデン溶解効率の最適化
シリカ添加セパレーターがモリブデン溶解に不可欠である理由、イオン保持と陰極析出の防止について学びましょう。
カスタマイズされた可視化テストセルの設計上の特徴は何ですか?オペランドバッテリーの洞察を解き放つ
サファイア窓や圧力機構など、オペランドバッテリー研究用の可視化テストセルの設計上の特徴を探る。
マイクロ電気化学セルシステムを使用する利点は何ですか?Mg-Ag合金特性評価の最適化
マイクロ電気化学セルシステム(MCS)が、生理学的媒体中でのMg-Ag合金の劣化を、高精度かつ迅速にスクリーニングできる仕組みをご覧ください。
Zn–Wo3における磁気攪拌と超音波処理の役割は何ですか?ナノ粒子分散の完全性を達成する
磁気攪拌と超音波処理がWO3の凝集を防ぎ、均一で高性能なZn–WO3複合電解質を作成する方法を学びましょう。
Devanathan-Stachurskiセルの機能は何ですか?マルテンサイト中の水素拡散の特性評価
Devanathan-Stachurskiセルが水素の取り込みと検出を分離して、マルテンサイトマトリックス中の拡散係数を計算する方法を学びましょう。
Pecリアクターのライトウィンドウとして石英ガラスを選択する主な理由は何ですか? Uv透過率の最大化
PECリアクターに石英ガラスが不可欠である理由を学びましょう。石英ガラスは高いUV透過率を提供し、光触媒の活性化と効率を最大化します。
連続フロー電解槽の構造的および性能上の利点は何ですか? 水素製造効率の向上
マイクロ間隔設計、低い電気抵抗、高い電流密度により、連続フロー電解槽がバッチセルをどのように上回るかをご覧ください。
銅塩素サイクル電解槽におけるゼロギャップ構成の実装はなぜ重要なのでしょうか?
銅塩素サイクル電解槽におけるゼロギャップ構成が、オーム抵抗を低減し、水素製造のエネルギー効率を向上させる方法をご覧ください。
Bmfcの組み立てには、なぜ二室型リアクター構造が一般的に選ばれるのですか?高い電気ポテンシャルを確保するため
嫌気性ゾーンと好気性ゾーンを分離し、効率的な電流生成を促進するために、BMFCにとって二室型設計が不可欠である理由を学びましょう。
電気化学合成システムはMof薄膜作製をどのように促進しますか?センサーのための精密工学
犠牲陽極と電解セルを使用した電気化学合成が、センサー用の高品質でひび割れのないMOF薄膜をどのように作成するかを学びましょう。
Iro2/Ato触媒のテストに回転円盤電極(Rde)システムが必要なのはなぜですか?正確なOerキネティックデータを取得する
RDEシステムが酸素気泡の干渉と物質移動の限界を排除し、IrO2/ATO触媒の真の固有活性を明らかにする方法を学びましょう。
亜鉛空気電池テストモールドの主な機能は何ですか?触媒の耐久性評価とサイクル効率
特殊な亜鉛空気電池テストモールドが、リアルタイムの電圧監視と長期サイクルを通じて二機能性触媒をどのように評価するかを学びましょう。
補助電極として白金(Pt)シートを選択する理由とは?電気化学的試験における精度を実現
白金(Pt)シートが補助電極の標準とされる理由を学びましょう。化学的不活性と高い導電性により、正確なデータを提供します。
全固体電池試験におけるカスタマイズされた圧力試験セルの機能は何ですか? インターフェース接触の最適化
カスタマイズされた圧力試験セルが、固体-固体インターフェースを維持し、体積膨張を管理する方法を全固体電池研究で学びましょう。
Eisでステンレス鋼ブロッキング電極を使用する目的は何ですか?バルク抵抗と導電率の分離
電解質バルク抵抗を分離し、正確なイオン導電率を計算するために、EISにおいてステンレス鋼ブロッキング電極が不可欠である理由を学びましょう。
Sofcの性能におけるEisを備えた電気化学ワークステーションの役割とは?精密診断を解き明かす
EIS搭載の電気化学ワークステーションがSOFCの抵抗をオーム抵抗、分極抵抗、拡散抵抗の成分に分解し、最適化する方法を学びましょう。
電解電極における金属メッシュ材料の主な用途は何ですか?触媒効率を最大化する
ニッケルとチタンのメッシュが触媒担体として機能し、電流収集を強化し、気泡遮蔽を低減することで電解を最適化する方法を学びましょう。
最も内側の境界層の物理的な意味は何ですか?材料封じ込めにおける重要な洞察
高温容器や電解槽における熱、化学、圧力管理にとって、最も内側の境界層がなぜ重要なのかを理解しましょう。
鉛二酸化チタン酸素発生電極の主な用途は何ですか?工業用酸化を強化する
PbO2-Ti電極が、高い酸素発生電位で廃水処理、電気合成、冶金分野でどのように優れているかをご覧ください。
単独でのHi分解に二室H型電解セルが必要なのはなぜですか?正確な速度論データを保証する
二室H型セルが反応環境を分離し、外部バイアスなしでHI分解の正確な測定を可能にする方法を学びましょう。
微生物燃料電池の研究において、飽和カロメル電極(Sce)が参照電極として使用されるのはなぜですか?
微生物燃料電池(MFC)の研究において、飽和カロメル電極(SCE)が安定性、精度、およびデータの比較可能性にとって不可欠である理由を学びましょう。
Ferroceneベースのフロー電池の電気化学的試験は、なぜアルゴン雰囲気グローブボックス内で行う必要があるのですか?
正確なデータを取得するために、アルゴン雰囲気グローブボックスがFerrocene電池にとって、ポリマーの劣化や亜鉛の酸化を防ぐために不可欠である理由を学びましょう。
イオン交換樹脂再生と電気化学的酸化システムを組み合わせることで、どのような技術的利点が得られますか?
IX樹脂再生と電気化学的酸化を組み合わせることで、持続可能なオンサイトPFAS分解ループがどのように構築されるかをご覧ください。
Li6Ps5Clの合成における、真空密封アンプルと炉の使用目的は何ですか?化学的純度と導電性を確保する
真空密封アンプルと高温炉が揮発を防ぎ、Li6PS5Cl電解質の化学量論を保証する方法を学びましょう。
イリジウム-タンタル-チタン酸素発生電極の特性は何ですか?高性能アノード
低過電圧、高電流密度、再利用可能なチタン基材など、イリジウム-タンタル-チタンアノードの特徴をご覧ください。
Na金属電池のテストにカスタマイズされたスプリングロード式圧力セルが必要なのはなぜですか?信頼性の高いサイクリングデータを確保する
インターフェースの剥離やインピーダンスのスパイクを防ぐために、ナトリウム金属電池のサイクリングに一定の3 MPaの積層圧が不可欠である理由を学びましょう。
実験室用回転ディスク電極(Rde)は、銅ナノキューブの再構築評価をどのように容易にしますか?
RDEが質量移動限界を排除し、精密な電気化学的表面速度論とCVスキャンを通じて銅ナノキューブの再構築を分析する方法を学びましょう。
石英窓を備えた光電気化学反応器の機能は何ですか? Pec水の電気分解効率を最大化する
PEC反応器の石英窓が紫外線の減衰を防ぎ、水の電気分解における正確な光電流密度と水素発生を保証する方法を学びましょう。
前へ
Page 3
次へ