あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
バッテリーラボ用途向け白金シート電極
有機溶媒溶解におけるAg/Agcl参照電極の役割とは?貴金属の精密な安定性
Ag/AgCl参照電極が有機溶媒中の貴金属溶解に対して安定した電位をどのように提供し、かつ液絡電位を管理するかを学びましょう。
Tio2上のGqdsに対する電着の利点は何ですか?研究における接着性と精度を高める
TiO2ナノロッドへのGQDsのロードにおいて、浸漬法よりも優れた接着性と正確なロード制御を提供する電着法が選ばれる理由を学びましょう。
なぜ、シミュレートされた体液中の腐食試験にポリテトラフルオロエチレン(Ptfe)試験セルが必要なのですか?
医療用腐食試験にPTFEセルが不可欠である理由を学びましょう。PTFEは化学的不活性と絶縁性を提供し、正確な実験データを保証します。
溶接サンプルに対する電気化学的腐食試験で、標準的な三電極系が必須であるのはなぜですか?
高精度な電気化学データを取得するためにIRドロップを排除する、溶接腐食試験における三電極系の重要性について学びましょう。
Eaopにおけるグラファイト電極のPvcマイクロプラスチックに対する機能とは? 現場ラジカルによる分解促進
EAOPにおけるグラファイト電極が陰極としてどのように機能し、PVCの脱塩素化と炭素鎖分解を効率的に行うためのヒドロキシルラジカルを生成するかを学びましょう。
Aisi 430 および Inconel 625 の樹枝状構造を明らかにする方法とは? 化学エッチングと電解エッチングのプロセスをマスターする
2段階エッチング法がAISI 430およびInconel 625溶接継手の樹枝状形態と元素偏析をどのように明らかにするかを学びます。
ブラシ状ポリアニリンの研究に3電極系と電気化学ワークステーションを使用する目的は何ですか?
ブラシ状ポリアニリンの電気化学的安定性を中性pH環境(6~9)で検証する方法を学びましょう。
水電解にゲル型Ag/Agcl参照電極が推奨されるのはなぜですか?高い安定性と精度を確保
ゲル型Ag/AgCl電極が、泡の干渉やイオンシフトを軽減することで、水電解中の測定をどのように安定させるかを学びましょう。
電気酸化(Eo)プロセスにおいて、ホウ素添加ダイヤモンド(Bdd)が陽極材料として選ばれるのはなぜですか?完全な無機化を達成する
ホウ素添加ダイヤモンド(BDD)が電気酸化の最適な陽極である理由を発見してください。高い酸素発生電位と完全なTOC除去を実現します。
Ac浸出における高純度グラファイト電極の主な機能は何ですか?効率的な金属回収を実現する
高純度グラファイト電極が不溶性の導電媒体として機能し、AC電気化学浸出を駆動して貴金属を回収する方法を学びましょう。
電気化学反応で黒鉛電極が好まれるのはなぜですか?耐久性があり、低コストな重付着物対策
重付着物を伴う電気化学反応において、黒鉛が機械的耐久性と比類なきコスト効率を提供するトップチョイスである理由をご覧ください。
なぜホウ素添加ダイヤモンド(Bdd)電極はマイクロプラスチック分解に理想的なのですか?完全鉱化を実現する
ヒドロキシルラジカル生成と広い電位窓により、BDD電極がマイクロプラスチック分解の最有力候補である理由をご覧ください。
マイクロプラスチック電気凝固におけるアルミニウム電極の利点は何ですか?処理と耐久性の向上
電気凝固において、鉄よりもアルミニウム電極が優れている理由、すなわち、より高いCOD除去率とより低いメンテナンス性を水処理で発見してください。
硫化物固体電解質に雰囲気制御装置を使用する必要があるのはなぜですか? 高導電率を確保する
硫化物電解質にとって不活性雰囲気と真空システムが、加水分解を防ぎ高いイオン伝導率を維持するために不可欠である理由を学びましょう。
外部圧力平衡型Ag/Agcl電極とソルトブリッジは、Hthp試験の課題をどのように解決しますか?
外部圧力平衡型Ag/AgCl電極と非等温ソルトブリッジが、高温高圧ラボでの安定性をどのように確保するかをご覧ください。
熱プラズマ反応器で高純度黒鉛電極と黒鉛るつぼが使用されるのはなぜですか?究極の安定性
熱プラズマ反応器にとって高純度黒鉛が、その極端な耐熱性と導電性により不可欠である理由を学びましょう。
亜鉛空気燃料電池における多孔質Ptfeシートの主な機能は何ですか?空気カソードの性能を最適化する
亜鉛空気燃料電池における多孔質PTFEシートが疎水性バリアとしてどのように機能し、酸素輸送と電解質保持のバランスをとるかを学びましょう。
Tin膜の評価に3電極電気化学セルシステムを使用する利点は何ですか?精度を実現
3電極電気化学セルがIRドロップと抵抗誤差を排除し、TiN膜の正確なEISおよび分極データを保証する方法をご覧ください。
700 Mpaの圧力は全固体電池電極にどのような影響を与えますか? 密度とイオン伝導率を最適化する
油圧プレスで700 MPaを印加すると、全固体電池電極の抵抗が最小限に抑えられ、固固接触が最大化される仕組みを学びましょう。
ジルコニア膜参照電極は、Fecral合金の監視においてどのような役割を果たしますか? 288℃でのSccを防止する
ジルコニア膜参照電極が、応力腐食割れ(SCC)を防止するために、288℃でFeCrAl合金の安定したECP監視をどのように可能にするかを学びましょう。
全固体電池の組み立てにおける精密ディスクカッターの具体的な用途は何ですか?バリのない精度を確保する
精密ディスクカッターが、バリのない電極やリチウム箔を作成することで全固体電池の組み立てを最適化し、電池性能を向上させる方法をご覧ください。
固体電池試験装置において、硬化鋼棒はどのような役割を果たしますか?精密圧力の確保
硬化鋼棒が固体電池の電気化学試験において、集電体および機械的圧力伝達体としてどのように機能するかをご覧ください。
高温固体氧化物电解(Soe)中,电解质支持型电池(Esc)和阴极支持型电池(Csc)在性能上有什么区别?
固体酸化物電解セルのESCおよびCSCアーキテクチャの主な違いについて、電解質厚さと温度効率に焦点を当てて学びましょう。
アーク炉における不融性タングステン電極の役割とは?高純度合金の溶解をマスターする
不融性タングステン電極が、高融点合金の製造においてクリーンな熱伝達を可能にし、汚染を防ぐ方法を学びましょう。
Ncm811電極のコールドプレスに高強度プレス金型が必要なのはなぜですか?優れたバッテリー密度を確保する
NCM811全固体電池電極において、材料密度と界面安定性を確保するために高強度金型が不可欠である理由を学びましょう。
チタンの腐食試験に高純度グラファイトロッドが使用されるのはなぜですか?ピークの完全性とデータの精度を確保する
チタン合金の電気化学的腐食試験において、高純度グラファイトロッドが不活性補助電極として好まれる理由をご覧ください。
化学気相成長(Cvd)装置の機能は何ですか?Bdd電極の精密成長
CVD装置が、制御された前駆体分解と精密な格子ドーピングを通じて、ホウ素ドープダイヤモンド(BDD)の成長を可能にする方法を学びましょう。
グラフェンハイブリッド電極にPtfeエマルジョンを添加する主な目的は何ですか?安定性と多孔性の向上
PTFEエマルジョンがグラフェンハイブリッド電極で重要なバインダーとしてどのように機能し、構造的完全性を確保し、栄養素の拡散を可能にするかを学びましょう。
湿式ボールミル法は、修飾された固相Li4Ti5O12の合成をどのように促進しますか?主要な均質化ステップ
マイクロエマルション形成、均一分散、反応物接触の強化により、湿式ボールミル法がいかに優れたLi4Ti5O12合成を可能にするかを学びましょう。
SoecにおけるYszを固体電解質として使用する必要性とは?高効率水蒸気電解の鍵を解き明かす
YSZ(イットリア安定化ジルコニア)がSOECに不可欠である理由、850℃までの比類なきイオン伝導性と熱安定性について学びましょう。
H型電解セルはどのように接続すべきですか?精密な電気化学実験のための専門家セットアップガイド
電気的極性、熱管理、機械的安定性プロトコルを網羅し、H型電解セルを正しく接続する方法を学びましょう。
ニッケル合金膜における三電極系の利点は何ですか?高精度な電位制御を解き放つ
光電気化学測定における精度を、電流の流れと電位測定を分離することで三電極システムがどのように向上させるかをご覧ください。
H型電解セルにおける電極とイオン交換膜の正しい設置手順は何ですか?
H型セルにおける電極と膜の設置に関するステップバイステップガイドを学び、プレハイドレーションと確実な電気的接続に焦点を当てます。
魚粉廃水処理にモリブデン含有ステンレス鋼が陰極として選ばれるのはなぜですか?耐久性と安定した設計
魚粉廃水処理にモリブデン含有ステンレス鋼が不可欠である理由、すなわち優れた耐食性と安定性について学びましょう。
統合型Pecセルのために高性能導電性銀ペーストが必要なのはなぜですか?直列エネルギー伝達の最適化
統合型PECセルアーキテクチャにおける低インピーダンス接続と光透過に高性能銀ペーストが不可欠な理由を学びましょう。
標準的な3電極電気化学セルにおける各コンポーネントは、Hea試験中にどのように機能しますか?
3電極セルにおける作用電極、参照電極、対極の機能を知り、正確なHEA電気化学データを取得する方法を学びましょう。
Ptcヒーターエレメントの典型的な産業用途は何ですか?効率的なポイントヒーティングソリューションを探る
PTCヒーターエレメントが医療機器、電子機器、産業用キャビネットのポイントヒーティングに理想的な理由をご覧ください。
Pecvdシステム内のウェーハと電極はどのように構成されていますか?平行平板アーキテクチャの習得
PECVD電極構成の基本を、平行平板設計から均一な薄膜堆積のためのプラズマ生成まで学びましょう。
ダイヤモンドの鑑別とは?天然ダイヤモンドとラボグロウンダイヤモンドを見分ける究極のガイド
宝石鑑定士がどのようにダイヤモンドを鑑別し、天然石とラボグロウンダイヤモンドを区別するのか、そしてなぜ正確な検証に高度なラボ分析が不可欠なのかを学びましょう。
エタノール酸化反応速度論の研究における三電極式電解セル の主な利点は何ですか?
エタノール酸化に三電極システムが不可欠である理由を発見してください。正確な電位制御を提供し、測定ノイズを排除します。
Zr2.5Nb合金におけるAg/Agcl参照電極の目的は何ですか?腐食試験の精度を確保する
Ag/AgCl参照電極が、Zr2.5Nb合金の腐食分析におけるOCPおよび不動態化の測定に必要な安定した基準をどのように提供するかを学びましょう。
光触媒反応においてPtfeシリンジフィルターを使用する目的は何ですか?正確なデータを確保し、装置を保護する
PTFEシリンジフィルターが光触媒粒子を除去し、正確な吸光度測定を保証し、敏感な実験装置を保護する方法を学びましょう。
Ruti合金混合にPtfeジャーを使用する利点は何ですか?化学的純度と高収率を保証
PTFEジャーがRuTi合金混合に不可欠である理由を発見してください。比類のない化学的不活性と焦げ付き防止性能により、汚染を防ぎます。
ステンレス鋼電極は陰極としてどのような役割を果たしますか?精密な塩素酸合成の動力源
ステンレス鋼陰極が水酸化物イオンを生成し、重要な水の還元プロセスを促進することで、塩素酸合成をどのように推進するかを学びましょう。
Sb2S3試験におけるPt電極およびAg/Agcl電極の役割とは?光電気化学研究を最適化する
Sb2S3試験において、白金対極およびAg/AgCl参照電極が正確なエネルギーバンド解析と電流の流れをどのように確保するかを学びましょう。
Lagp合成における白金るつぼの使用目的は何ですか?高温反応における純度を確保する
1350℃でのLAGP固相反応において、汚染を防ぎ高いイオン伝導性を確保するために白金るつぼが不可欠である理由を学びましょう。
全固体電池の高温性能試験で精密チャンバーを使用する必要があるのはなぜですか?Asbの性能を最適化する
精密な温度制御が全固体電池試験におけるイオン伝導性と熱機械的結合をどのように活性化するかを学びましょう。
Li6Ps5Clのホットプレス中にステンレス鋼製モールドはどのような役割を果たしますか?精密な固体状態の緻密化を実現
ステンレス鋼製モールドが、200℃までの高圧耐性と熱安定性により、Li6PS5Cl電解質の緻密化をどのように可能にするかをご覧ください。
全固体電池の電極フィルムにおいて、特殊な加圧金型はどのように役立ちますか?高密度化の専門家ガイド
特殊な加圧金型が、プレス中の全固体電池電極フィルムの均一な密度と構造的完全性をどのように確保するかを学びましょう。
電極の研磨、テスト、クリーニングのステップバイステッププロセスとは?精密な結果を得るためのプロガイド
電極メンテナンスをマスターしましょう:機械研磨、CV検証(≤80mV)、安全な超音波洗浄技術の詳細ガイド。
腐食試験における飽和甘汞電極(Sce)の目的は何ですか?電気化学的精度をマスターする
飽和甘汞電極(SCE)が、正確な腐食速度とピッティング電位測定のために安定した基準電位をどのように提供するかを学びましょう。
光電気化学バッテリーシステムには、なぜ精密循環水槽が必要なのですか?精度を確保するため。
光電気化学システムにおける熱管理、データの妥当性、および安全性に精密循環水槽が不可欠である理由を学びましょう。
Esw試験におけるステンレス鋼電解セルの機能は何ですか?イオン液体分析の精度を確保する
ステンレス鋼電極が不活性なブロッキング電流コレクターとして機能し、イオン液体の電圧限界を正確に定義する方法を学びましょう。
なぜBddは繊維廃水に理想的な陽極なのですか?ダイヤモンド電極で高効率な鉱化作用を解き放つ
ホウ素添加ダイヤモンド(BDD)電極が廃水電気酸化の最良の選択肢である理由を発見してください。優れた鉱化作用と耐久性を提供します。
高純度グラファイトロッドが対極として好まれるのはなぜですか?汚染のない電気化学分析を保証する
高純度グラファイトロッドが対極として選ばれる理由、すなわち化学的不活性と金属イオン汚染の防止について学びましょう。
ジルコニウム電極におけるポリエーテルエーテルケトン(Peek)の機能とは?腐食研究における精度向上
PEEK絶縁が、活性表面積を定義し、攻撃的な化学物質に耐えることで、ジルコニウム電極のデータ整合性をどのように確保するかを学びましょう。
バッテリー解体の産業用破砕機の主な機能は何ですか?回収原料を最適化する
産業用破砕機が衝撃力とせん断力を使用して使用済み三元系バッテリーを粉末化し、自動材料回収を可能にする方法を学びましょう。
180℃ Llzaリチウム処理における加熱装置使用の目的は何ですか?固体-固体界面の最適化
180℃の熱処理がリチウムを軟化させ、空隙を除去し、LLZA電解質界面のインピーダンスを低減してバッテリー性能を向上させる方法を学びましょう。
電気触媒評価における標準的な三電極電解セルシステムのコア機能は何ですか?
三電極電解セルが固有の触媒活性を分離し、オーム分極を排除して正確なデータを取得する方法を学びましょう。
精密電気化学試験セルの主な設計上の考慮事項は何ですか?実験室での特性評価を最適化する
主要な設計上の洞察で電気化学試験をマスターしましょう。流体の均一性と機械的完全性が燃料電池の正確なデータを保証する方法を学びましょう。
リチウム空気電池において、溶融塩電解質はなぜ重要なのでしょうか?高エネルギー貯蔵のための高性能消耗品
溶融塩電解質が、高温下での安全性、安定性、反応速度を向上させることで、リチウム空気電池の研究をどのように強化するかを学びましょう。
Lcla複合材料のTgaにおいて白金(Pt)製サンプルるつぼが好まれるのはなぜですか? データの完全性を確保する
900℃までのLCLA複合材料のTGAに白金るつぼが不可欠である理由、すなわち化学的不活性と高い熱伝導率について学びましょう。
Ni-Cr合金の腐食速度論に3電極電気化学セルシステムが必要なのはなぜですか?専門家による分析
正確な電位制御と精密な不動態化データを確保するために、Ni-Cr腐食研究に3電極システムが不可欠である理由を学びましょう。
チタン系複合金属酸化物(Dsa)電極の利点は何ですか?バイオレメディエーション効率の向上
バイオレメディエーションにおけるDSAと炭素電極を比較します。チタン複合金属酸化物が、より優れた安定性とエネルギー効率をどのように提供するかを学びます。
Pmma/Hbn合成におけるステンレス鋼製高圧反応器の機能とは?精密なポリマー制御を実現する
高圧反応器がPMMA/hBN複合材料合成における熱制御を可能にし、揮発性物質の損失を防ぎ、高分子量Ensuring Homogeneity and Purityを保証する方法を学びましょう。
鉄置換マンガン酸化物実験に白金ロジウムるつぼが必要なのはなぜですか?正確なデータを確保する
化学的不活性とデータの精度を確保するために、高温熱重量分析に白金ロジウムるつぼが不可欠な理由を学びましょう。
炭素棒が対極として推奨されるのはなぜですか? Fecrniconb0.5合金の正確なサイクリック分極を実現する
FeCrNiCoNb0.5合金試験に炭素棒が不可欠である理由を学びましょう。化学的安定性、高い導電性、純粋な信号分離を提供します。
H2O2燃料電池研究におけるグラファイトを用いた三電極システムの利点は何ですか?データ精度を確保する
三電極グラファイトシステムがiR降下と金属汚染を排除し、燃料電池触媒の正確な特性評価を可能にする方法をご覧ください。
Pecテスト中の3電極電解セルはどのように機能しますか?Mos2光アノード分析の最適化
MoS2光アノードテストにおける作用電極、対極、参照電極の役割を理解し、正確な光電流と効率のデータを取得する。
大規模固定床電気化学システムにおいて、対極として使用されるチタン金属メッシュの役割は何ですか?
チタンメッシュが高性能な対極として、固定床システムにおける抵抗を低減し、腐食に耐える仕組みをご覧ください。
固定床アノードシステムにおいて、グラファイト粒が電極材料として好まれるのはなぜですか?微生物フラックスを最大化する
固定床アノードの最良の選択肢としてグラファイト粒が選ばれる理由を発見し、優れた微生物コロニー形成とフラックスのための高い表面積を提供します。
なぜガラス状炭素ディスク電極は不可欠な消耗品なのですか?今日、信頼性の高い触媒評価を保証します。
ガラス状炭素ディスク電極が触媒試験に不可欠である理由を学びましょう。優れた導電性、化学的不活性、広い電位窓を提供します。
ホウ素添加ダイヤモンド(Bdd)電極を使用する技術的な利点は何ですか?廃水中の有機物の完全分解を最大化する
BDD電極の利点を解き明かしましょう:高い酸素発生電位、ヒドロキシルラジカル生成、COD除去のための非選択的酸化。
酸性電解質において、炭素棒が対極として一般的に選択されるのはなぜですか?高い化学的安定性を確保する
炭素棒が酸性環境において理想的な対極である理由を学びましょう。耐食性を提供し、サンプル汚染を防ぎます。
コールドプレスと比較した場合のスパークプラズマ焼結(Sps)炉を使用する利点は何ですか?Llto密度を向上させる
SPS焼結が、限られたコールドプレス法と比較して、LLTO電解質で98%以上の密度と優れたイオン伝導率を達成する方法をご覧ください。
Bdd電極の利点は何ですか?廃水処理の効率と耐久性を最大化する
ホウ素ドープダイヤモンド(BDD)電極が、難分解性有機汚染物質の処理において、高い酸化力と極めて優れた耐食性を提供する方法をご覧ください。
非活性Bddアノードはなぜ廃水処理に選ばれるのですか?汚染物質の完全な鉱化を達成するため
高酸素発生電位による有機汚染物質の完全な鉱化に非活性BDDアノードがいかに不可欠であるかを学びましょう。
高多孔性炭素系ガス拡散電極の機能は何ですか?エレクトロ・フェントン効率の最適化
高多孔性炭素GDEがエレクトロ・フェントンプロセスでin-situ H2O2生成を促進し、有機汚染物質の分解を最大化する方法を学びましょう。
水素発生におけるRvcフォームの技術的利点は何ですか?3D電極の性能を向上させる
多孔性、物質移動、優れた表面積により、Reticulated Vitreous Carbon (RVC) フォームが水素発生を最適化する方法を発見してください。
低濃度廃水におけるスパイラル巻き電極の機能とは?貴金属回収効率を最大化する
スパイラル巻き電極がどのように物質移動限界を克服し、希薄な廃水流からの完全な金属回収を実現するかを学びましょう。
高精度電気化学ワークステーションは、カソード作製にどのように利用されますか?精密触媒析出
ポテンショスタットが定電位電解と定量析出を可能にし、高性能カソード材料を作成する方法を学びましょう。
リグニン灰のXrf分析において、高純度白金るつぼが不可欠な理由とは?信頼性の高い融解で正確なデータを確保
リグニン灰のXRF前処理において、高純度白金るつぼがなぜ重要なのかを学び、汚染を防ぎ、化学的完全性を確保しましょう。
水素発生反応(Her)試験において、Ag/AgclまたはHg/Hgoなどの参照電極の選択は、電解液のPhとどのように相関しますか?
HERテストにおいて、電解液の酸性およびアルカリ性でAg/AgClとHg/HgOが不可欠である理由を学び、潜在的なドリフトと過電圧誤差を防ぎましょう。
アルミニウムアノードの機能層に金属ニッケル粒子が使用されるのはなぜですか?全固体電池の安定性向上
ニッケル機能層がリチウム流動調整器として機能し、全固体電池研究におけるアノードの故障やストレスを防ぐ方法をご覧ください。
薄膜ボルタンメトリーにおいて、Ag/Agcl参照電極はなぜ重要なのでしょうか?電気化学的試験における精度を達成する
Ag/AgCl参照電極が、安定した電圧ベンチマーク、正確な原子価状態のマッピング、および触媒選択性にとって不可欠である理由を学びましょう。
マイクロバッチ スラッグフローシステムにおけるPtfeの具体的な応用例は?マイクロ流体反応の純度を高める
PTFEの疎水性と化学的不活性が、液滴の均一性を確保し、壁面のファウリングを防ぐことで、マイクロバッチ スラッグフローをどのように最適化するかを発見してください。
H型電解セルの全体構造とは?デュアルチャンバー電気化学設計の理解
H型電解セルの構造について学びましょう。このセルは、製品の相互汚染を防ぐために、デュアルチャンバーとイオン交換膜を備えています。
固体電池試験に精密実験用オーブンを使用する目的は何ですか?高温安定性を確保する
精密オーブンが固体電池にとって不可欠である理由を学びましょう。ポリマー電解質の活性化から、重要な熱暴走安全性試験の実施まで。
Tearの設計は、プロセス強化(Pi)の原則をどのように実装していますか?リアクター効率の向上
TEARがプロセス強化をどのように実装しているかを学び、3D電極とスタティックミキサーを統合して、追加の電力なしで物質移動を1.2倍向上させます。
実験室用回転ディスク電極(Rde)は、銅ナノキューブの再構築評価をどのように容易にしますか?
RDEが質量移動限界を排除し、精密な電気化学的表面速度論とCVスキャンを通じて銅ナノキューブの再構築を分析する方法を学びましょう。
Lagp合成に高温るつぼが必要な理由は何ですか?ガラスセラミック電解質製造における純度を確保する
LAGPの急冷に白金とアルミナルつぼが不可欠である理由、1300℃を超える高温での腐食と熱への耐性について学びましょう。
中世のガラスを溶解する際に白金るつぼを使用する利点は何ですか? 100%の純度とデータの精度を保証します。
1400℃で中世のガラスを溶解するために白金るつぼが不可欠である理由を発見してください。化学的不活性と優れた熱安定性を提供します。
Ni/Al2O3 + Tio2予備コーティングにおける電解質システムはどのような役割を果たしますか? Ti-6Al-4V表面処理を最適化する
電解質システムがニッケル核生成とナノ粒子懸濁をどのように制御し、チタン合金上に高性能複合コーティングを作成するかを学びましょう。
Embrにおける炭素繊維ブラシ電極の機能は何ですか?Cod除去率の向上と膜寿命の延長
炭素繊維ブラシ電極が高効率アノードとしてEMBRでどのように機能し、細菌の増殖を最適化し、膜ファウリングを防ぐかを学びましょう。
パイプライン鋼監視における飽和カロメル電極(Sce)の役割は何ですか?腐食データの精度を確保する
飽和カロメル電極(SCE)が、パイプライン鋼の研究における正確な電気化学的ノイズ監視のための安定した基準値を提供する方法を学びましょう。
高精度白金-ロジウム熱電対は、活性化エネルギーの計算にどのように貢献しますか? | Kintek
高精度熱電対が、塩素腐食研究における正確な活性化エネルギーと速度論的分析のための等温安定性をどのように確保するかをご覧ください。
Ti/Ta2O5–Iro2電極の主な機能は何ですか?Dsa技術によるアクリル酸分解の促進
Ti/Ta2O5–IrO2電極が寸法安定性電極(DSA)として塩素発生を触媒し、アクリル酸を効率的に除去する仕組みを学びましょう。
ガス拡散電極(Gde)の主な機能は何ですか?Co2電解における物質移動の促進
ガス拡散電極(GDE)が、3相界面を介してCO2溶解度の限界を克服し、高電流密度電解を可能にする方法を学びましょう。
Limocl4複合カソードにおいて、コールドプレスよりもホットプレスを使用する利点は何ですか?バッテリー効率の向上
ホットプレスでLiMOCl4カソードをプレスすると、界面インピーダンスが低下し、熱変形と精密制御により空隙が解消される仕組みをご覧ください。
微生物燃料電池の研究において、飽和カロメル電極(Sce)が参照電極として使用されるのはなぜですか?
微生物燃料電池(MFC)の研究において、飽和カロメル電極(SCE)が安定性、精度、およびデータの比較可能性にとって不可欠である理由を学びましょう。
前へ
Page 3
次へ