あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
フラット腐食電解電気化学セル
コーティング評価用電解槽とその蓋はどのような材料でできていますか?正確な電気化学試験を保証するために
化学的不活性、熱安定性、データ精度を確保するために、なぜ高ホウケイ酸ガラス、PTFE、POMが電解槽に選ばれるのかを学びましょう。
5ポート水浴式電気分解セルのメンテナンスのための洗浄方法は?信頼性の高い結果を得るためのステップバイステップガイド
汚染のない再現性のある電気化学測定を保証するために、5ポート電気分解セルの適切な洗浄とメンテナンスの手順を学びましょう。
非密閉型および密閉型電解セルを開ける構成はどうなっていますか?電気化学セットアップを最適化しましょう
実験における正確な大気制御のために、非密閉型電解セルと密閉型電解セルのポートの主な違いを学びましょう。
電解槽を洗浄する際の主な注意点は何ですか?実験室の安全性と正確な結果を確保するために
電解槽の洗浄に関する重要な注意点を学び、損傷を防ぎ、安全を確保し、実験の精度を維持しましょう。一般的な間違いを避けましょう。
新しい電解セルを初めて使用する前にどのように洗浄すべきですか?正確で再現性のある結果を確保するために
製造残留物を除去するための、新しい電解セルの洗浄における重要な3ステッププロトコル(硝酸浸漬、超音波洗浄、乾燥)を学びましょう。
電気分解槽の設計において、電極間隔を精密に制御する必要があるのはなぜですか? 効率と安定性を最適化する
電気分解槽における精密な電極間隔が、電力損失を削減し、短絡を防ぎ、電気化学反応を最適化する方法を学びましょう。
使用前に全Ptfe電解セルで実行すべき検査手順は何ですか?信頼性の高い結果を保証する
構造的完全性、表面品質、および漏れ防止を網羅する、PTFE電解セルの使用前検査の必須手順を学びましょう。
In-Situラマンスペクトル測定用電気化学セルを使用する際の重要な注意点は何ですか?安全性とデータ精度を確保する
in-situラマンスペクトル測定用電気化学セルのための必須の注意事項(電気的安全性、壊れやすい部品の取り扱い、洗浄手順)について学びましょう。
超密閉型電解セルにおける一般的な容量範囲と開口部の構成は?電気化学的セットアップを最適化する
超密閉型電解セルの標準仕様を学ぶ:10ml~100mlの容量と、精密で制御された実験のための5つの開口部設計。
実験室用三電極電解セルの機能設計とは?チタン合金の精度
デュアルループアーキテクチャにより、三電極設計がチタン合金電気化学システムにおける測定誤差をどのように排除するかを学びましょう。
精密電気化学試験セルの主な設計上の考慮事項は何ですか?実験室での特性評価を最適化する
主要な設計上の洞察で電気化学試験をマスターしましょう。流体の均一性と機械的完全性が燃料電池の正確なデータを保証する方法を学びましょう。
固体電池の試験において、圧力制御型電気化学試験セルの役割は何ですか?
圧力制御型電気化学試験セルが、界面の完全性を維持し、インピーダンスを低減することで固体電池を安定させる方法をご覧ください。
電解プロセス中に厳密に制御する必要があるパラメーターは何ですか?精度と効率を確保してください。
電圧、電流、温度を制御して電解をマスターしましょう。これらのパラメーターを最適化して、純度、速度、エネルギー効率を高める方法を学びましょう。
オールクォーツ電解セルとその構成要素を長期使用のためにどのように維持すべきか?機器の寿命を最大化するためのガイド
オールクォーツ電解セルのための必須のメンテナンス手順(丁寧な取り扱い、電極の洗浄、乾燥保管など)を学び、長期的な信頼性を確保しましょう。
オールクォーツ電解セルを取り扱う際、使用する際に取るべき予防措置は何ですか?安全で正確、かつ耐久性のある性能を確保するために
破損を防ぎ、データの精度を確保し、装置の寿命を最大限に延ばすために、オールクォーツ電解セルの取り扱い、洗浄、操作に関する重要な注意事項を学びましょう。
密閉型および非密閉型全石英電解セルの標準的な開口部仕様は何ですか?電気化学セットアップを最適化する
全石英電解セルの標準的な開口部サイズ(Φ6.2mmおよびΦ3.2mm)と、実験に適した密閉型または非密閉型デザインの選び方を学びましょう。
多機能電気分解セルにはどのような種類の電極が使用されていますか?精密測定のための三電極システムをマスターする
多機能電気分解セルにおける作用電極、対極、参照電極の仕組みと、それらがどのように精密な電気化学分析を可能にするかを学びます。
五口水浴式电解池の標準的な構成要素は何ですか?電気化学分析のための精密機器を習得しましょう
正確な電気化学実験のために、ガラス本体、ルギン毛細管、通気チューブなど、五口電解セルの標準的な構成要素について学びましょう。
H型電解槽の定期メンテナンスには何が含まれますか?データ整合性を確保するためのガイド
H型電解槽の必須メンテナンス手順を学び、漏れを防ぎ、正確なデータを確保し、電気化学実験を保護しましょう。
全Ptfe電解セルで長期的な信頼性を確保するために、定期的な点検が必要なコンポーネントは何ですか?
PTFE電解セルの本体、電極、シール、膜という4つの重要なコンポーネントを点検し、漏れや汚染を防ぐ方法を学びましょう。
三室H型電解セルの機能は何ですか?複雑な多段階電気化学反応を解き放つ
三室H型電解セルがいかにして反応中間体の精密な制御と高度な研究のための多段階電気化学合成を可能にするかを発見してください。
H型セルとは何ですか?正確な実験のための分液型電気化学セルのガイド
H型セルの分液設計が電極干渉をどのように防ぎ、クリーンで制御された電気化学測定と合成を可能にするかを学びましょう。
全Ptfe電解セルを使用した実験後の電極はどのように取り扱うべきですか?実験後のケアガイド
PTFE電解セル使用後の電極の洗浄、乾燥、保管に関する必須プロトコルを学び、データの精度と寿命を確保しましょう。
グリセロール電解で二室型H型ガラス電解セルが使用されるのはなぜですか?純粋な生成物の単離を保証する
H型ガラス電解セルがグリセロール電解に不可欠である理由、生成物の再還元を防ぎ、分析精度を保証する方法を学びましょう。
H型電解セルの実験中に観察すべきことは何ですか?正確な結果を得るための重要な監視項目
実験の精度と実験室の安全を確保するために、H型セルでの泡の発生、電解液の色、温度の監視方法を学びましょう。
インサイチュラマン電解セルはどのように維持管理すればよいですか?精密分光のための必須ケアのヒント
インサイチュラマン電解セルの維持管理に関するベストプラクティスを、洗浄プロトコルから保管方法まで学び、高品質なデータと長寿命を確保しましょう。
In-Situ Raman電解セルを使用した実験のセットアップと実行の手順は何ですか?
電気化学データの信頼性を確保するために、in-situラマンスペクトル電解セルを組み立て、接続し、操作するための正確な手順を学びましょう。
石英窓付き電解セルの要件は何ですか?正確なPec性能テストを保証する
PECテストに石英窓が不可欠である理由、正確な光電流とI-Vデータを保証する高い紫外・可視光透過率について学びましょう。
高温固体氧化物电解(Soe)中,电解质支持型电池(Esc)和阴极支持型电池(Csc)在性能上有什么区别?
固体酸化物電解セルのESCおよびCSCアーキテクチャの主な違いについて、電解質厚さと温度効率に焦点を当てて学びましょう。
Xafs用の特殊なIn-Situ電気化学セルは、どのような設計要件を満たす必要がありますか?スペクトルデータを最適化する
X線透過性、材料の安定性、幾何学的精度を含む、in-situ XAFSセルの必須設計要件を学びましょう。
単槽式電解セルよりも二槽式電解セルが好まれるのはなぜですか?コルベ電解の収率を最大化する
二槽式セルがコルベ電解に優れている理由、すなわち生成物の分解を防ぎ、pHを安定させて効率を高める方法を学びましょう。
Bsaaプロセスにおける電解セルの機能は何ですか?アルミニウム陽極酸化処理の品質における重要な役割
電解セルがホウ酸-硫酸陽極酸化(BSAA)プロセスをどのように推進し、アルミニウム上に均一で保護的な酸化皮膜を形成するかを学びましょう。
電気分解セルの本体は何でできていますか?信頼性の高い電気化学のための高ホウケイ酸ガラス
電気分解セルの本体の標準材料として高ホウケイ酸ガラスが選ばれる理由を発見してください。これは、化学的不活性性、熱安定性、および完全な可視性を提供します。
電気分解セルシステムの主要な構成要素とその機能は何ですか?制御された化学反応の核心をマスターする
精密な化学変換のための電気分解セルシステムにおける電極、電解質、および電源の役割を学びましょう。
全石英電解セルで利用可能な容量と寸法は何ですか?あなたの研究室にぴったりのものを見つけましょう
精密な電気化学実験のために、標準およびカスタムの全石英電解セルの容量(30ml-100ml)と寸法(50mm³)を探求してください。
H型電解セル操作中に従うべき主要な安全上の注意事項は何ですか?リスクのない実験のための必須ガイドライン
個人用保護具(PPE)から換気、電気制御、部品検査に至るまで、H型電解セルの操作に関する重要な安全手順を学び、事故を未然に防ぎましょう。
硫酸銅参照電極の性能特性は何ですか?現場腐食試験のための比類なき安定性
硫酸銅参照電極の主要な特徴をご覧ください:高い安定性、堅牢性、携帯性により、信頼性の高い現場での腐食電位測定が可能です。
H型電解セルの光学的な特徴は何ですか?光電気化学のための精密石英窓
H型電解セルにおける高品質な石英窓が、高度な光電気化学研究における優れた光透過をどのように可能にするかをご覧ください。
H型電解セルの使用における主要な安全操作ガイドラインは何ですか?ラボのためのベストプラクティス
PPE、電気的チェック、操作監視に関するガイドでH型電解セルの安全をマスターし、ラボの事故を防ぎましょう。
改質アルミニウムアノードの調製において、電解セルはどのような役割を果たしますか?リチウム拡散の最適化
電解セルがアルミニウムアノードへのニッケル析出を精密に制御し、均一なリチウム拡散と安定した合金化反応を保証する方法を学びましょう。
H型セルと比較して、フロー電解セルにはどのような利点がありますか?Co2電解効率の最適化
フロー電解セルが物質移動の問題をどのように解決し、オーム損失を低減して工業規模のCO2電解を可能にするかをご覧ください。
インサイチュラマン分光用電解セルの標準的な容量はどのくらいですか?標準20Mlとカスタムオプションを探る
インサイチュラマン分光用電解セルの標準的な20mlの容量と、ポートの寸法や電極構成が研究にどのように影響するかを学びましょう。
H型電解セルの正しいシャットダウン手順は何ですか? 必須の安全およびメンテナンスガイド
H型電解セルの安全なシャットダウンシーケンスを学び、電気アークの発生を防ぎ、機器を保護し、データの整合性を確保します。
標準的な3電極電解セルシステムは、モンモリロナイトとTio2をどのように分析しますか?データ精度を向上させる
3電極システムがモンモリロナイト-TiO2複合材料の電荷移動と分離効率を測定し、優れた材料分析を実現する方法を学びましょう。
銅電極とPtfeリングを備えた導電率試験セルは、フッ素化炭素エアロゲルの特性評価をどのように容易にしますか?
銅電極とPTFEリングが、油圧下でのフッ素化炭素エアロゲルの正確な導電率測定をどのように可能にするかをご覧ください。
多孔質ガラスを使用したH型電解セルは何のために使用されますか? イオンの再析出を防ぎ、データの整合性を確保します。
H型セルと多孔質ガラス隔膜が、イオン移動を防ぎ、正確な電気化学的溶解を保証するために不可欠である理由を学びましょう。
3電極電解セルを使用する利点は何ですか?ステンレス鋼分析の精度を達成する
経年劣化したステンレス鋼の高精度電気化学的特性評価に3電極電解セルが不可欠である理由をご覧ください。
実験中に電解セルをセットアップする手順は何ですか?正確な電気化学データのためのセットアップを習得する
信頼性のある再現可能な実験結果を確実にするため、電極の準備から電気接続まで、電解セルセットアップの正確な手順を学びましょう。
超密閉型電解セルの適切な使用後手順とは?安全性と長寿命のためのガイド
超密閉型電解セルのオペレーターの安全性、実験の精度、機器の長寿命を確保するための、必須のシャットダウン、洗浄、保管手順を学びましょう。
ガラス部品を備えたH型電解セルはどのように取り扱うべきか?安全で長持ちさせるための使用ガイド
H型ガラス電解セルの取り扱いに関する必須プロトコルを、安全かつ正確性を期すための丁寧な移動、検査から、洗浄、保管まで学びましょう。
電解槽のガラス部品を適切に扱う方法は何ですか?安全で正確な実験を確保するために
破損、汚染を防ぎ、データ精度を確保するために、電解槽のガラス器具の取り扱い、洗浄、保管に関する正しい手順を学びましょう。
Sse参照電極は、ジルカロイ-2試験におけるデータの比較可能性をどのように確保しますか?安定した腐食研究の達成
飽和銀/塩化銀(SSE)電極が、放射線下でのジルカロイ-2の孔食試験において安定した基準を提供する仕組みをご覧ください。
Cu-Clサイクルにおける電解セルの機能とは?水素生成とエネルギー効率の最適化
Cu-Clサイクルにおける電解セルが水素発生と銅酸化をどのように促進するか、また膜が効率に果たす重要な役割について学びましょう。
全石英電解セルはどのような材料で構成されていますか?純度と性能のガイド
全石英電解セルの高純度石英本体とPTFE蓋について学び、UV透過性と化学的不活性の重要性を理解しましょう。
5ポート水浴式電解セルを用いた実験中に汚染を避けるにはどうすればよいですか?3つの柱からなるプロトコルを習得しましょう。
5ポート電解セルでの汚染を防ぎ、正確で再現性のある結果を保証するための体系的な3つの柱のアプローチを学びましょう。
Ptfe電極スタンドに補助装置を設置するにはどうすればよいですか?安定した干渉のないセットアップを確保してください
電気化学実験の精度を損なうことなく、PTFE電極スタンドに撹拌機、センサーなどを適切に取り付ける手順を学びましょう。
5ポート水浴電解セル使用時の液漏れを防止するには?信頼性の高い安全な電気化学的セットアップを確保する
5ポート電解セルにおける液漏れを防止するための体系的なアプローチを学び、シール検査、適切な組み立て、壊れやすいガラス部品の慎重な取り扱いに焦点を当てます。
3電極電解セルの利点は何ですか? Lto/Lpsc & Nb2O5/Lpsc電極の精密解析
3電極システムで電極電位を分離し、LTO/LPSC & Nb2O5/LPSC複合材料の正確な電気化学分析を可能にします。
H型電解セルを安全に実験室で使用するために従うべき安全対策と操作ガイドラインは何ですか?
H型電解セルの安全性をマスターしましょう。感電防止、防火、正確な操作手順に関する必須プロトコルを学びましょう。
電気分解セルの反応を制御するにはどうすればよいですか?電圧、電流、電解質をマスターする
電圧、電流、電解質の組成を調整することで電気分解反応の制御を学び、正確な化学合成と生産を実現します。
H型交換膜電気分解セルの機能とは何ですか?正確な反応制御をマスターする
H型電気分解セルがイオン交換膜を使用して陽極反応と陰極反応を分離し、正確な制御と高純度合成を可能にする方法を学びましょう。
H型交換可能膜電気分解セルの構造とは?正確な電気化学的分離のためのガイド
Hセルの二室設計、イオン交換膜、および電気化学反応の分離と制御のための電極ポートについて学びましょう。
電解槽における不適切な電圧制御のリスクとは?高価な損傷と非効率性を回避する
電解液の分解、電極の損傷、安全上の危険など、不適切な電解電圧制御のリスクを学び、プロセスを最適化しましょう。
電解槽と電極の定期的なメンテナンスと手入れに関するガイドラインは何ですか?長寿命と正確な結果を保証するために
電解槽の必須メンテナンスプロトコル(即時洗浄、電極検査、適切な保管など)を学び、データ精度を保証します。
電気分解セルは、他に何と呼ばれますか?電気分解セルとガルバニ電池の理解
電気分解セルとガルバニ電池の主な違い、それらの機能、およびエネルギー変換と材料生産における応用について探ります。
密閉型および非密閉型電気分解セルのキャップにはどのような材料が使用されていますか?Ptfe対Pomを解説
密閉型電気分解セルが気密シールのためにPTFE/POM複合キャップを使用する理由と、非密閉型セルが耐薬品性と使いやすさのために全PTFEキャップを使用する理由を学びましょう。
電解セルの一般的な容量仕様とカスタマイズオプションは何ですか?正確な結果を得るためにセットアップを調整しましょう。
電解セルの容量(30ml~1000ml)と三電極システム用のカスタムオプションについて探ります。電気化学研究に適したセルの選び方を学びましょう。
多機能電解槽の高温滅菌に関するガイドラインは何ですか?Ptfe蓋への永久的な損傷を避けるために
多機能電解槽の正しい高温滅菌プロトコルを学び、PTFE蓋の変形を防ぎ、実験の完全性を確保しましょう。
実験中、5ポート水浴電解槽はどのように操作すべきですか?信頼性の高い結果を得るための精密な制御を習得する
5ポート電解槽の操作に関するステップバイステップガイド。正確な電気化学実験のためのセットアップ、システム統合、実行、および一般的な落とし穴について学びます。
全Ptfe電解セルに使用する電極の推奨されるメンテナンス方法は?寿命とデータの精度を確保するために。
信頼性の高い電気化学的性能を確保するために、全PTFE電解セル電極の洗浄、検査、保管を含む必須のメンテナンス手順を学びましょう。
3電極電気化学セル構造が不可欠なのはなぜですか?正確な触媒性能評価データを取得する
触媒試験において3電極システムが不可欠である理由を学び、正確な電位制御と制限のない電流測定を保証します。
Eco2Rプロセスにおける高性能電解セルの主な機能は何ですか?実験結果を最適化しましょう。
高性能電解セルが三相界面を安定化し、イオン移動を管理して効率的なeCO2R反応を実現する方法を学びましょう。
光電試験に石英窓付き三電極電解セルを使用する利点は何ですか?
高精度な光電気化学試験を実現します。石英窓がUV-Vis光透過と正確なデータ結果に不可欠な理由を学びましょう。
薄層分光電気化学セルの推奨される実験後の洗浄および保管手順は何ですか?
電解液の除去から電極のケアまで、分光電気化学セルの洗浄と保管に不可欠な手順を学び、データの精度を確保しましょう。
3電極式電解セルシステムの利点は何ですか?Ruo2の精密な特性評価を実現
3電極システムが作用電極の電位を分離し、RuO2の擬似容量とOERの開始電位を正確に測定する方法を学びましょう。
Ptfe製電解セルの一般的な容量とカスタマイズオプションは何ですか?
10mlから500mlまでの全PTFE電解セルにおける標準容量について学び、過酷な化学環境向けのカスタマイズを探る。
特定の反応におけるH型電解セルでの電解質の管理方法は?精密な制御と高純度を実現する
H型セルにおける陽極液と陰極液の管理方法を学び、適切な電解質組成により、最適な反応制御、製品純度、効率を実現する方法を習得しましょう。
H型電解セルとその蓋の製造にはどのような材料が使用されていますか?化学的不活性と安定性に関するガイド
H型電解セルが、最適な耐薬品性、熱安定性、信頼性の高いシールを実現するために、なぜ高ホウケイ酸ガラス、PTFE、POMを使用しているのかをご覧ください。
アクリル製電解セルの温度制限は何度ですか?恒久的な損傷を防ぐため、80°C未満に維持してください
アクリル製電解セルの重要な熱制限である80°C、過熱のリスク、および装置を保護するための必須の冷却および安全プロトコルについて学びましょう。
アクリル製電気分解セルの推奨動作温度とシーリングは?安全性と材料の完全性を確保してください
アクリル製電気分解セルを室温で操作し、機器の故障や危険な圧力上昇を防ぐために密閉しない理由を学びましょう。
H型交換膜電解セルにおける標準的な開口部仕様は何ですか?精密電気化学のための非対称ポート
H型電解セルの標準ポートレイアウト(6.2mmおよび3.2mm)と、非対称設計が正確な三電極セットアップをどのようにサポートするかを学びましょう。
ガラス製電気分解セル全般の取り扱いに関するアドバイスは何ですか?正確な電気化学的結果を確保する
ガラス製電気分解セルの適切な取り扱い、洗浄、安全プロトコルを学び、汚染を防ぎ、研究室でのデータ精度を確保しましょう。
H型電解槽の本体にはどのような材料が一般的に使用されていますか?実験に最適な材料を選びましょう
H型電解槽に使用される高ホウケイ酸ガラス、PTFE、石英の主な特性(耐薬品性、透明性、熱安定性など)について学びましょう。
Irsn/Mmt触媒における3電極ガラス電解セルの役割は何ですか?Oerスクリーニング性能の最適化
3電極ガラス電解セルが活性サイトを分離し、干渉を排除して正確なIrSn/MMT触媒スクリーニングを行う方法をご覧ください。
Tio2成長における二電極電気化学リアクターの役割は何ですか?今日、秩序だったナノ構造を実現しましょう
二電極電気化学リアクターが秩序だったTiO2陽極酸化膜の成長を促進し、量子効率を向上させる方法を学びましょう。
Rvc電極の洗浄・取り扱い時に必要な物理的保護対策は何ですか?カーボンラティスを保護する
RVC電極の必須保護対策を学びましょう。RVCの多孔性を維持するために、非接触洗浄と丁寧な取り扱いがなぜ不可欠なのかを発見してください。
単槽フロー電気化学反応器の機能は何ですか?今すぐクロム酸塩合成を最適化しましょう
単槽フロー反応器が、電解液循環、定電流、塩素不均化によってクロム酸塩合成をどのように促進するかを学びましょう。
Zr2.5Nb合金におけるAg/Agcl参照電極の目的は何ですか?腐食試験の精度を確保する
Ag/AgCl参照電極が、Zr2.5Nb合金の腐食分析におけるOCPおよび不動態化の測定に必要な安定した基準をどのように提供するかを学びましょう。
3D構造へのPbo2電析に電気化学フローリアクターが必要なのはなぜですか?物質移動の問題を解決する
イオン枯渇と拡散限界を克服することで、PbO2を3D基板に析出させる際にフローリアクターが静置セルよりも優れている理由を学びましょう。
Niti合金試験における高精度電気化学セルの主な役割は何ですか?生体適合性と安全性を確保する
高精度電気化学セルが生体環境をどのようにシミュレートし、多孔質NiTi合金の耐食性を評価するかを学びましょう。
多機能電解セルの標準的な容量範囲はどれくらいですか?研究室に最適なサイズを選ぶ
電気化学研究における三極子システムに最適化された、標準的な50mlから500mlの容量範囲をご覧ください。
石英が電解槽に適している主な特徴は何ですか?優れた性能を支える4つの柱を発見
石英が電解槽に理想的な材料である理由となる、化学的安定性、耐高温性、電気絶縁性、光学的透明性という4つの主要な特性を探ります。
5ポート水浴電解セルにおける温度および滅菌の制限は何ですか?材料の制約に関するガイド
5ポート電解セルの重要な温度および滅菌限界について学び、損傷を防ぐためにガラス本体とPTFE蓋の制約に焦点を当てます。
薄層分光電気化学セルにはどの電極タイプが適合しますか?ハードウェアの適合性を最適化する
分光電気化学セル用のAg/AgCl参照電極、Ptワイヤー対極、Ptメッシュ作用電極の正確な仕様を学びましょう。
三室H型電解セルの構造とは何ですか?複雑な電気化学反応のための精度を解き放つ
三室H型セルのアノード、カソード、中央分離室の設計が、高度な多段階電気分解と中間体の研究をどのように可能にするかを学びましょう。
アクリル製電解槽本体の材料特性とは? | 透明性、安全性、耐薬品性
アクリル(PMMA)製電解槽本体の主要な特性(光学的な透明性、耐薬品性、熱的限界など)を、実験室での実験のために探求します。
H型電解セルの故障や誤動作が発生した場合、どのように対処すべきか?安全かつ効果的なトラブルシューティングのためのガイド
H型電解セルの故障に対処するためのステップバイステップのプロトコルを学びましょう。初期評価とユーザーによる対応可能な修正から、専門家を呼ぶべき場合までを解説します。
H型電解槽を使用する際に、どのような実験条件を制御する必要がありますか?信頼性と再現性のある結果を確保するために
正確なH型セル実験のために、物理的完全性、化学的純度、電気的/熱的パラメータの制御を習得しましょう。実験室での再現性のための必須ガイド。
スーパーシール型電気化学セルを使用する前に必要な手順は何ですか?安全性とデータ保全性を確保してください
スーパーシール型電気化学セルの使用前に行うべき4つの重要な手順(点検、洗浄、取り付け、準備)を学び、オペレーターの安全とデータの正確性を確保しましょう。
超密閉型電解セルの一般的なメンテナンスと手入れの手順は何ですか?信頼性の高い電気化学データを確保するために
汚染を防ぎ、部品の寿命を延ばし、再現性のある結果を得るために、超密閉型電解セルの重要なメンテナンス手順を学びましょう。
前へ
Page 3
次へ