あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
Xrdサンプルホルダー/X線回折装置パウダースライド
EdsとXrfの違いは何ですか?Edsは微量分析用、Xrfはバルク分析用
EDSとXRFの主な違いを学びましょう。EDSは電子ビームを使用して微量分析を行い、XRFはX線を使用してバルク化学分析を行います。
分析においてサンプル調製が重要なのはなぜですか?正確で再現性のある結果を保証するため
信頼できる科学的分析のために、正確性、再現性、そして意味のあるデータを保証する適切なサンプル調製の重要性について学びましょう。
宣誓供述時間の計算方法は?戦略的な法的優位性のための時計の習得
連邦規則に基づく宣誓供述時間の計算方法を学びましょう。当事者に対する7時間の制限時間には、尋問する弁護士の時間のみが加算されます。
サンプルサイズは分析にどのように影響しますか?研究の信頼性を最大化する
サンプルサイズが統計的検出力と精度にどのように影響するかを学びましょう。適切なサンプリングにより、誤った結論を避け、自信を持ってデータに基づいた意思決定を行いましょう。
試料を融解させるのに必要な熱量を計算するには、どのような方程式を使用しますか?融解熱の公式をマスターする
融解熱の式 (q = m * ΔH_f) を使用して試料を融解させるのに必要なエネルギーを計算する方法を学びます。一般的な落とし穴と段階的な例も含まれています。
サンプルサイズは何によって決まるのか?正確な調査のための3つの主要因をマスターする
誤差の範囲、信頼水準、母集団の分散がどのようにサンプルサイズを決定するかを学びましょう。信頼性の高い結果を得るために戦略的なトレードオフを行いましょう。
サンプル調製中の汚染源として考えられるものは何ですか?データを保護するためのガイド
サンプル調製における4つの主要な汚染源(環境、分析者、試薬、相互汚染)について学びましょう。分析結果を保護します。
塗料の塗布量を計算するには?正確な材料見積もりのための実践ガイド
体積固形分、塗着効率、および塗布時の損失を考慮に入れて、実際の塗料の塗布量を計算し、正確なプロジェクト見積もりを行う方法を学びましょう。
電子ビーム法の利点は何ですか?速度、コスト削減、材料の完全性を実現
高速薄膜成膜や、医療機器の穏やかで信頼性の高い滅菌における電子ビーム技術の主要な利点を発見してください。
ゴールドPvdには本物の金が使われているのか?耐久性のあるゴールド仕上げの真実を解き明かす
ゴールドPVDには本物の金が使用される場合もあれば、窒化チタンのような耐久性のある代替品が使用される場合もあります。情報に基づいた選択をするために、主な違いを学びましょう。
Cvdダイヤモンドの原材料は何ですか?ガスを完璧な宝石に変える
CVDダイヤモンドは、高純度メタンガスとダイヤモンドシードから成長します。この精密なプロセスがどのようにして本物のラボグロウンダイヤモンドを生み出すかをご覧ください。
真空成膜の用途は何ですか?製品に高性能コーティングを施しましょう
クリーンな真空環境下で、光学、エレクトロニクス、保護コーティング、パッケージングのために超薄膜・高純度膜を成膜する真空成膜の応用方法を探ります。
スパッタリングプロセス中にアルゴンを使用する目的は何ですか?効率的な薄膜堆積を可能にする
なぜアルゴンガスがスパッタリングに不可欠なのかを学びましょう。アルゴンガスは、ターゲット原子をスパッタリングするためのイオンを生成し、さまざまな用途向けに高純度で均一な薄膜を確実に形成します。
蒸着とスパッタリングの違いは何ですか?適切な薄膜成膜法を選択する
蒸着とスパッタリングを比較:メカニズム、膜質、コストの主な違い。どのPVD法があなたの研究室のニーズに適しているかを学びましょう。
材料のスパッタリング収率とは?成膜速度と膜品質をマスターする
スパッタリング収率(イオン1個あたりの放出原子数)が薄膜成膜速度と品質をどのように制御するかを学びましょう。イオンエネルギーや質量などの主要因でプロセスを最適化します。
真空スパッタリングとは?精密薄膜成膜のためのガイド
半導体、光学機器などに使用される超薄膜、高純度コーティングが真空スパッタリングによってどのように成膜されるかを学びます。プロセスとその応用を理解しましょう。